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Abstract
Objective: Long-term standardized monitoring programs are fundamental to as-
sessing how fish populations respond to anthropogenic stressors. Standardized mon-
itoring programs may need to adopt new methods to adapt to rapid environmental 
changes that are associated with a changing climate. In the upper Yellowstone River, 
Montana, biologists have used a standardized, mark–recapture monitoring proto-
col to annually estimate the abundance of trout since 1978 to assess population sta-
tus and trends. However, within the past two decades, climate change has caused 
changes in discharge timing that have prevented standardized monitoring from oc-
curring annually.
Methods: We investigated the feasibility of using two analytical methods, N-mixture 
models and mean capture probability, for estimating the abundance of three trout 
species in the upper Yellowstone River using the historical long-term data set; these 
methods allow abundance to be estimated when a mark–recapture estimate cannot 
be obtained due to hydrologic conditions.
Result: When compared with abundance estimates from mark–recapture methods, 
N-mixture models most often resulted in negatively biased abundance estimates, 
whereas mean capture probability analyses resulted in positively biased abundance 
estimates. Additionally, N-mixture models produced negatively biased estimates 
when tested against true abundance values from simulated data sets. The bias in the 
N-mixture model estimates was caused by poor model fit and variation in capture 
probability. The bias in the mean capture probability estimates was caused by hetero-
geneity in capture probability, likely caused by variable environmental conditions, 
which were not accounted for in the models.
Conclusion: N-mixture models and mean capture probability are not viable alter-
natives for estimating abundance in the upper Yellowstone River. Thus, exploring 
additional adaptations to sampling methodologies and analytical approaches, in-
cluding models that require individually marked fish, will be valuable for this sys-
tem. Climate change will undoubtedly necessitate changes to standardized sampling 
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INTRODUCTION

Long-term standardized monitoring programs are fun-
damental for assessing how fish populations respond to 
anthropogenic stressors and changing environmental con-
ditions (Radinger et  al.  2019). Standardized monitoring 
data are commonly used to measure changes in the abun-
dance and distribution of fishes over space and time and 
provide valuable information for management decisions, 
especially in an adaptive management context (Schreiber 
et al. 2004; Bonar et al. 2009; McClelland et al. 2012; Wagner 
et al. 2013; Hansen et al. 2015). Long-term monitoring re-
quires standardization to identify trends and make tempo-
ral comparisons; however, monitoring may be adapted as 
technology, questions of interest, and the sampling feasi-
bility change (Lindenmayer and Likens  2009). Adapting 
existing monitoring programs will likely become increas-
ingly important as climate change alters environmental 
conditions (Lindenmayer and Likens 2009; Lindenmayer 
et al. 2011). Adaptive monitoring may include developing 
and implementing new monitoring protocols, adjusting 
the frequency of sampling, addressing new questions and 
hypotheses related to climate change, and adopting new 
analytical methods (Paukert et al. 2016; Shirk et al. 2023).

In the upper Yellowstone River, Montana Fish, Wildlife 
and Parks (MFWP) biologists have been monitoring the 
abundance of nonnative Rainbow Trout Oncorhynchus 
mykiss, Brown Trout Salmo trutta, and native Yellowstone 
Cutthroat Trout Oncorhynchus virginalis bouvieri since 1978. 
The monitoring program consists of annual mark–recap-
ture surveys to estimate the abundance of the three trout 
species, which support a valuable recreational fishery that 
contributed an estimated US$70 million to the local econ-
omy in 2013 (Sage  2016). Mark–recapture surveys consist 
of a marking survey and a recapture survey, and Lincoln–
Petersen mark–recapture methods are used to estimate trout 
abundance. In southwestern Montana, climate change is al-
tering the timing and duration of spring snowmelt runoff 
(Hostetler et  al.  2021), and these changes have prevented 
trout monitoring from occurring consistently in the upper 
Yellowstone River over the past two decades. Specifically, 
warming spring temperatures cause the river discharge to 
increase from baseflow conditions to peak runoff condi-
tions more quickly (Figure S1 available in the Supplemental 
Material in the online version of this article), resulting in 
a reduced period when sampling can occur because of the 

reduced capture efficiency at high discharge (Lamborn and 
Smith  2019). A reduced sampling period has prevented 
a recapture survey from occurring in some years and has 
occasionally prevented all sampling from occurring, and 
abundance estimates cannot be obtained in these years. 
Thus, changes in discharge patterns have resulted in numer-
ous gaps in the annual abundance data for the monitored 
species, making it difficult to identify trends in population 
abundance (Opitz  2021). Gaps in monitoring data are of 
particular concern for the endemic Yellowstone Cutthroat 
Trout, which are a focus of conservation efforts through-
out the upper Yellowstone River watershed (Endicott 
et al. 2013). Thus, the standardized monitoring program for 
the Yellowstone River must be adapted to continue the long-
term monitoring program in a changing climate.

Novel methods for estimating the abundance of animal 
populations have been developed in recent years, giving 
biologists more flexibility when designing and implement-
ing monitoring programs (Williams et al. 2002; Kéry and 
Royle  2015). Here, we explore two analytical methods, 
N-mixture models and mean capture probability, as al-
ternatives to the Lincoln–Peterson mark–recapture meth-
ods that historically have been used for the Yellowstone 
River trout populations and other trout populations 
across Montana. N-mixture models use replicated count 
data from unmarked animals to estimate abundance and 
capture probability (Royle 2004). N-mixture models have 
commonly been used with mammals, birds, and herpeto-
fauna (McCaffery et al. 2016; Williams et al. 2017; Ficetola 
et  al.  2018) but are less commonly applied to fish pop-
ulations (but see Som et  al.  2018; Vine et  al.  2019). We 
used N-mixture models to estimate both abundance and 
capture probability from the number of sampled fish 
during electrofishing surveys. In addition to N-mixture 
models, we took advantage of long-term data on capture 
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probability from the mark–recapture estimates to estimate 
abundance, using capture probability as either a mean or 
a running average. Both the N-mixture models and mean 
capture probability use the current long-term data set, al-
lowing us to maintain continuity, which is an important 
component of adaptive monitoring (Lindenmayer and 
Likens 2009). Additionally, both methods can be used to 
estimate abundance from a single sample per year (Mitro 
and Zale 2000; Costa et al. 2019).

We investigated the feasibility of using N-mixture mod-
els and mean capture probability to estimate abundance of 
three trout species in the upper Yellowstone River using the 
existing, long-term data set spanning 44 years, from 1978 to 
2021. Our research objectives for each trout species were (1) 
to compare abundance estimates from N-mixture models 
and Lincoln–Petersen mark–recapture models to determine 
whether N-mixture models provide a viable alternative 
method for estimating trout abundance, (2) to evaluate 
whether estimates from N-mixture models are biased rela-
tive to abundance values from simulated data sets, and (3) 
to compare mean capture probability and Lincoln–Petersen 
mark–recapture abundance estimates to determine whether 
mean capture probability methods can be used as an alter-
native method for estimating trout abundance. This research 
improves our understanding of the utility of two analytical 
methods for long-term standardized monitoring programs 
under increasingly challenging environmental conditions.

METHODS

Study area

The Yellowstone River originates in the Bridger-Teton 
National Forest in northwestern Wyoming and flows 
1114 km to the confluence with the Missouri River in 
western North Dakota (Figure 1). It is the longest unregu-
lated river in the contiguous United States. The hydrologic 
regime of the Yellowstone River is snowmelt driven, with 
a large peak in discharge in the late spring during runoff. 
Our study area consists of two long-term sampling sites, 
Corwin Springs and Mill Creek, located between Gardiner 
and Livingston, Montana (Figure  1). The boundaries of 
the sampling sites have varied slightly among years; the 
mean length of the Corwin Springs site is 7.66 km (stand-
ard deviation (SD) = 1.52 km), and mean length of the Mill 
Creek site is 7.60 km (SD = 0.85 km).

Mark–recapture

Mark–recapture sampling was conducted by MFWP bi-
ologists beginning in 1978 at Corwin Springs and 1980 at 

Mill Creek annually during a period of 1–2 weeks at each 
site, when local populations could reasonably be assumed 
to be closed to changes in size due to births, immigration, 
deaths, or emigration (Otis et al. 1978). Historically, mon-
itoring was conducted in mid-April to early May when 
the discharge of the Yellowstone River was favorable 
for electrofishing, between 56 and 142 m3/s (horizontal 
dashed lines in Figure S1). Electrofishing was most often 
conducted using one or two outboard jet boats mounted 
with boom electrofishing equipment; however, drift boats 
or rafts were used for sampling from 2008 to 2010 at the 
Corwin Springs site due to variable discharge conditions. 
The boats were each equipped with a Smith Root VVP-
15B and a Honda generator (Opitz 2021) and had one or 
two netters. Output amperage was standardized between 
2.5 and 3.0. Each survey consisted of electrofishing along 
both riverbanks. When two jet boats were available, the 
two boats would electrofish along the left and right banks 
simultaneously; when one boat was used, electrofishing 
along each bank occurred separately over 1 or 2 days. Each 
fish was identified to species and measured to the nearest 
2.5 mm (0.1 inches) following MFWP standard protocol. 
During the marking sample, each fish was marked with 

F I G U R E  1   Locations of the Corwin Springs and Mill Creek 
sampling sites on the Yellowstone River, Montana. The enlarged 
area is denoted by the shaded rectangle in the inset map.
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a pelvic fin clip and released at the site where it was sam-
pled. A recapture sample occurred about 7 days after the 
marking sample, allowing the marked fish to mix with the 
population. Both marking and recapture samples were 
conducted in 32 out of 44 years for the Corwin Springs site. 
In four additional years, a marking sample was conducted 
but flow conditions prevented the recapture sample from 
occurring, resulting in data from a single electrofishing 
survey only; in the remaining 4 years, no sampling oc-
curred. For the Mill Creek site, both marking and recap-
ture samples were conducted in 33 out of 42 years and a 
marking sample only was conducted in two additional 
years. In the remaining 5 years, no sampling occurred.

Statistical analysis

Mark–recapture

We used a Chapman-modified Lincoln–Petersen estimator 
to estimate the population size of Yellowstone Cutthroat 
Trout, Rainbow Trout, and Brown Trout ≥178 mm in total 
length at each site. The estimates were divided by the 
length of the site to estimate the number of fish per kilo-
meter each year. Chapman-modified Lincoln–Petersen 
mark–recapture abundance estimates (hereafter, “mark–
recapture estimates”) were only calculated for years when 
both marking and recapture surveys were conducted. All 
the analyses were conducted in R version 4.3.1 (R Core 
Team  2023). The mark–recapture estimates were calcu-
lated using the mrClosed() function in the FSA package in 
R (Ogle et al. 2023).

N-mixture models

We used N-mixture models to estimate the abundance of 
each trout species at Corwin Springs from 1978 to 2021 
and Mill Creek from 1980 to 2021. A time-for-space sub-
stitution approach was used; therefore, we modeled each 
site and species separately (Costa et al. 2019, 2021). The 
number of fish that was sampled during each survey 
was used as count data. The mark and recapture surveys 
served as replicate site visits, so our data set included up 
to two site visits per year. Using a time-for-space substi-
tution approach allowed us to estimate abundance in 
years with only a single site visit (Costa et al. 2019). We 
fit three N-mixture models for each site and species com-
bination: a Poisson N-mixture model with no covariates, 
a negative binomial N-mixture model with no covariates, 
and a Poisson N-mixture model with river discharge in-
cluded as a covariate to model capture probability. We 

did not consider a negative binomial N-mixture model 
with river discharge due to unstable estimates from the 
negative binomial N-mixture model with no covariates. 
Discharge data were obtained from the U.S. Geological 
Survey stream gauge at Corwin Springs, Montana, located 
at the southern boundary of the Corwin Springs sampling 
site (U.S. Geological Survey 2023). Mean daily discharge 
on each day when sampling was conducted was used as a 
covariate for capture probability.

When fitting the Poisson N-mixture models, the upper 
limit of integration, K, was set to 2000; this value was se-
lected because it was higher than the largest observed count 
for any site or species and increasing the value of K above 
2000 did not affect the estimates (Kéry and Royle 2015). 
Models were considered unstable if the estimates contin-
ually increased as values of K increased. Abundance was 
estimated for trout species in each year from the posterior 
distribution of the latent abundance using the ranef() func-
tion from the unmarked package, and all N-mixture mod-
els were fit using the pcount() function in the unmarked 
package in R (Fiske and Chandler  2011). The model fit 
of the N-mixture models was assessed using the nmixgof 
package in R (Knape et al. 2018). We assessed overdisper-
sion, using the overdispersion parameter ̂c  ( ĉ  = 1 indicates 
no overdispersion) and examined quantile–quantile plots 
of randomized quantile residuals for normality (Knape 
et  al.  2018). To compare the abundance estimates from 
the N-mixture models with the mark–recapture estimates, 
we calculated relative bias as the difference between the 
N-mixture abundance estimate and the mark–recapture 
abundance estimate divided by the mark–recapture abun-
dance estimate for each year. The median value of rela-
tive bias indicates whether the abundance estimates show 
consistent negative or positive bias relative to the mark–
recapture estimates, whereas the spread of relative bias is 
used to assess the range of bias in estimates.

N-mixture modeling of simulated data sets

Simulations were used to assess the performance of the 
N-mixture models using empirical estimates of abun-
dance and capture probability from the Yellowstone 
River. All abundance estimation methods may be biased, 
so the mark–recapture estimates may not represent the 
true abundance of trout in the upper Yellowstone River. 
The use of simulated data sets allowed us to compare the 
N-mixture model estimates with known abundance val-
ues. We then analyzed each data set and compared the 
abundance estimates from the N-mixture models with 
the simulated abundance values to evaluate the perfor-
mance of models. To simulate the data sets, we used 
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the simNmix() function from the AHMbook package in 
R (Kéry et al. 2022). The mean abundance and capture 
probability values from the mark–recapture estimates for 
each species and site were used as the mean abundance 
and capture probability values for the simulated data sets. 
Abundance was simulated using a negative binomial dis-
tribution, and values of capture probability were allowed 
to vary by sampling event to best approximate our ob-
served data sets. Variation in capture probability was in-
corporated as a random effect on the logit scale that was 
obtained from a normal distribution with a mean of zero 
and a standard deviation of 0.3 (Kéry and Royle  2015). 
We simulated 500 30-year data sets for each site and spe-
cies and fit Poisson N-mixture models to each data set. 
Each data set was simulated using two sampling events 
per year. To assess model performance, relative bias was 
calculated as the difference between the estimated and 
simulated values for abundance.

Mean capture probability

Mean capture probability was calculated from the long-
term monitoring data set for each combination of spe-
cies and site by averaging the capture probability point 
estimates from all years when mark–recapture estimates 
were completed (Figure 2) using the equation N̂ = C∕ p̂, 
where N̂ is the estimated abundance; C is catch, defined 
as the number of fish captured during a marking electro-
fishing survey; and p̂ is estimated capture probability. We 
standardized the abundance estimates by reach length to 
estimate the number of fish per kilometer in each year. 
The variation associated with the estimate was obtained 
by dividing the number of fish that was sampled during 
the marking run by the 25th quantile of capture probabil-
ity (upper limit) and the 75th quantile of capture probabil-
ity (lower limit). A moving-average approach was used 
to account for the variation in capture probability over 
time. We calculated a 3-year moving average of capture 
probability; a 2-year moving average was used for the first 
and last years in the data set to avoid missing values. To 
estimate abundance, we divided the number of fish that 
we  caught during the marking run by the moving aver-
age of capture probability for the appropriate year. The 
variation that was associated with the estimate was cal-
culated as the number of fish that was caught during the 
marking run divided by the minimum capture probability 
from the 3-year window (upper limit) and the maximum 
capture probability from the 3-year window (lower limit). 
To compare the mean capture probability estimates with 
the mark–recapture estimates, relative bias was calculated 
using the same approach as was used for the N-mixture 
models.

RESULTS

Mark–recapture estimates

The mean number of sampled fish in each electrofishing 
survey varied from 144 (SD = 85) for Yellowstone Cutthroat 
Trout at Mill Creek to 450 (SD = 305) for Brown Trout at 
Mill Creek. The mark–recapture abundance estimates var-
ied over time by species and site. Mean abundance over the 
entire study period was highest for Brown Trout at Mill 
Creek at 200 fish/km (SD = 116) and lowest for Yellowstone 
Cutthroat Trout at Mill Creek at 72 fish/km (SD = 52). The 
empirical estimates of mean capture probability varied from 
0.15 to 0.22 for all sites and species (Figure 2).

N-mixture model fit

The N-mixture models resulted in unsatisfactory model 
fit for the data sets. Goodness-of-fit testing indicated 
that the data sets for each species and site displayed 
overdispersion, which resulted in poor model fit when 
using the Poisson N-mixture models. The overdisper-
sion parameters ( ĉ ) were >45 for all models, indicat-
ing strong overdispersion (Table  1). Additionally, an 
inspection of quantile–quantile plots indicated that the 
randomized-quantile residuals were not normally dis-
tributed (Figure S2). Including discharge as a covariate 
to model capture probability did not improve the model 
fit (Table 1). The negative binomial N-mixture models 
showed better model fit than did the Poisson N-mixture 
models. The values of ̂c  were <3.5 for all models, and the 

F I G U R E  2   Mean capture probability and 25th and 75th 
quantiles by trout species and site. The smaller points indicate 
all values of capture probability that were calculated from mark–
recapture surveys conducted from 1978 to 2021 at Corwin Springs 
and from 1980 to 2021 at Mill Creek in the upper Yellowstone 
River, Montana.
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randomized-quantile residuals were normally distrib-
uted (Table 1; Figure S2). However, the negative bino-
mial N-mixture models resulted in unstable abundance 
estimates. Thus, the benefit of the improved model fit 
with the negative binomial N-mixture models is negated 
by the instability of the model, which prevented us from 
obtaining abundance estimates using this model type. 
Despite the high overdispersion, we moved forward with 
estimating abundance, using the Poisson N-mixture 
models to illustrate how model fit influenced the esti-
mates of abundance and capture probability relative to 
the mark–recapture estimates and simulated data sets.

Poisson N-mixture models

The Poisson N-mixture models produced estimates that 
were biased relative to the mark–recapture estimates. 

The estimated capture probabilities from the Poisson 
N-mixture models varied from 0.17 for Yellowstone 
Cutthroat Trout at Mill Creek to 0.40 for Rainbow Trout at 
Corwin Springs (Figure 3). The Poisson N-mixture models 
resulted in capture probabilities that were higher than the 
mark–recapture estimates for all sites and species except 
for Yellowstone Cutthroat Trout at Mill Creek (Figures 2 
and 3). The N-mixture abundance estimates had lower in-
terannual variation than the mark–recapture abundance 
estimates (Figure 4). The abundance estimates from the 
Poisson N-mixture models were generally lower than the 
mark–recapture abundance estimates, and therefore, me-
dian relative bias was less than zero for all sites and spe-
cies, excluding Yellowstone Cutthroat Trout at Mill Creek 
(Figures 4 and 5). Relative bias was highest and had the 
largest spread for Yellowstone Cutthroat Trout at Mill 
Creek, with a median value of 1.20 and an interquartile 
range (IQR) of 1.46. (Figure 5).

F I G U R E  3   Capture probability estimates with 95% confidence intervals from Poisson N-mixture models with no covariates and from 
Poisson N-mixture models with discharge as a covariate for capture probability by trout species and site for the upper Yellowstone River, 
Montana.

T A B L E  1   Values of the overdispersion parameter ĉ  for the Poisson N-mixture models, Poisson N-mixture models with discharge as 
a covariate for capture probability, and negative binomial N-mixture models with no covariates by trout species and site for the upper 
Yellowstone River, Montana.

Species Site Poisson Poisson with discharge Negative binomial

Yellowstone Cutthroat Trout Corwin Springs 45.18 93.76 1.68

Mill Creek 52.64 1892.60 1.81

Rainbow Trout Corwin Springs 79.73 94.13 1.57

Mill Creek 90.33 92.45 1.73

Brown Trout Corwin Springs 115.71 140.05 2.11

Mill Creek 226.77 253.94 3.35
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Poisson N-mixture models with discharge

Mean daily discharge varied from 40 to 459 m3/s on 
the days when the surveys were conducted. The me-
dian value of daily average discharge was 80 m3/s when 
the surveys were conducted at Corwin Springs and 76 
m3/s when surveys were conducted at Mill Creek. In 
general, including discharge as a covariate resulted in 
higher and unrealistic estimates of capture probability 
and lower estimates of abundance than were observed 
with the Poisson N-mixture models without a covariate 
(Figures 3 and 4). Median relative bias was below zero 
for all sites and species except Yellowstone Cutthroat 
Trout at Mill Creek, which had a median relative bias of 
2.79 (Figure 5). The IQR was less than zero for all sites 
and species except for Yellowstone Cutthroat Trout at 

Mill Creek. Including discharge in the model resulted 
in higher discrepancy between the N-mixture model 
abundance estimates and mark–recapture abundance 
estimates (Figure 5).

N-mixture model simulations

The Poisson N-mixture models generally underestimated 
abundance when they were fit to the simulated data sets 
using mean abundance and capture probability values 
from empirical data (Figures S3). The Poisson N-mixture 
models occasionally overestimated abundance for some 
simulated data sets but rarely resulted in accurate abun-
dance estimates. Median relative bias was below zero for 
all sites and species (Figure 6).

F I G U R E  4   Point estimates and 95% confidence intervals of the number of fish per kilometer using mark–recapture methods, N-mixture 
models with no covariates, and N-mixture models with discharge as a covariate for capture probability for three trout species at two sites in 
the Yellowstone River, Montana, from 1978 to 2021.
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Mean capture probability

The abundance estimates from mean capture probabil-
ity were generally higher than the mark–recapture esti-
mates; however, there were instances where the mean 
capture probability estimates were lower than the mark–
recapture estimates (Figure 7). Median relative bias was 
greater than zero for all sites and species (Figure  8). 
Median relative bias varied from 0.10 (IQR = 0.72) for 
Rainbow Trout at Mill Creek to 0.31 (IQR = 0.84) for 
Brown Trout at Corwin Springs. The IQR varied from 
0.48 for Yellowstone Cutthroat Trout at Corwin Springs 
to 0.84 for Brown Trout at Corwin Springs. The spread 
of relative bias indicates the possibility of both over- 
and underestimating of abundance relative to mark–re-
capture abundance estimates. The median and IQR of 
relative bias were similar among all sites and species 
(Figure 8), indicating that the comparisons between the 
abundance estimates from mean capture probability 
and mark–recapture methods were similar by species 
and sites. The 3-year moving average of capture prob-
ability resulted in estimates that were comparable to 
the overall mean capture probability (Figure 8). Median 
relative bias when using the moving average of capture 
probability varied from 0.04 (IQR = 0.72) for Rainbow 
Trout at Mill Creek to 0.34 (IQR = 0.75) for Brown Trout 
at Mill Creek (Figure 8).

DISCUSSION

Identifying alternative methods for continuing standard-
ized long-term monitoring of trout populations in the 
Yellowstone River is important as environmental condi-
tions change. Our results indicate that neither N-mixture 
models nor mean capture probability analysis provided 
unbiased abundance estimates relative to the mark–re-
capture abundance estimates. Due to overdispersion 
and unmodeled heterogeneity in capture probability in 
our data set, the model fit of the N-mixture models was 
poor, resulting in unreliable estimates of abundance 
and capture probability. The N-mixture model estimates 
were most often lower than the mark–recapture esti-
mates for all sites and species, excluding Yellowstone 
Cutthroat Trout at Mill Creek. Furthermore, the results 
of the simulations indicated that the estimates from the 
N-mixture models were biased relative to the true simu-
lated abundance values. The mean capture probability 
analysis most often overestimated abundance relative to 
the mark–recapture abundance estimates. These results 
suggest that neither the N-mixture models nor the mean 
capture probability analysis are feasible alternatives 
to mark–recapture models for trout monitoring in the 
upper Yellowstone River. Thus, exploring other alterna-
tive sampling methods and analytical approaches will be 
needed for the study system.

F I G U R E  5   Relative bias of N-mixture abundance estimates relative to mark–recapture abundance estimates for three trout species 
at Corwin Springs and Mill Creek on the Yellowstone River, Montana, using Poisson N-mixture models and Poisson N-mixture models 
with discharge as a covariate for detection probability. The lower and upper bounds of the boxes indicate the 25th and 75th quantiles, 
respectively, and the centers of the boxes indicate the median. The whiskers extend to 1.5 times the IQR both above and below the quantiles. 
The dashed line indicates a relative bias of 0, indicating that both methods resulted in identical abundance estimates.
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Poor model fit due to limitations of the data set caused 
bias in the abundance estimates from the Poisson N-
mixture models. Violations of parametric modeling as-
sumptions can result in severe underestimation when 
abundance values are overdispersed (Knape et al. 2018), 
and the overdispersion parameters were high for all the 
Poisson N-mixture models in our analysis. To address the 
overdispersion in our data set, we fit negative binomial 
N-mixture models but were unable to obtain stable abun-
dance estimates from these models. Negative binomial 

N-mixture models are more likely to result in unstable es-
timates or unidentifiable parameters, despite often show-
ing better model fit than Poisson N-mixture models (Kéry 
and Royle 2015; Kéry 2018). Overdispersion also appeared 
to influence bias in the abundance estimates in our simu-
lations. The N-mixture models generally underestimated 
abundance relative to the known simulated data sets, in-
dicating that using N-mixture models to estimate abun-
dance of trout in the Yellowstone River would result in 
biased abundance estimates. Reporting the estimates from 

F I G U R E  6   The relative bias of the N-mixture model abundance estimates relative to the simulated abundance values for three trout 
species at Corwin Springs and Mill Creek on the Yellowstone River, Montana. The vertical line indicates a relative bias of zero, indicating 
that the N-mixture model estimates were identical to the simulated abundance values.
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the N-mixture models and proceeding with the simulation 
analysis despite indications of poor model fit provided a 
more complete understanding of how violations of model 
assumptions can affect resulting estimates and under-
scored the importance of assessing model fit, particularly 
when exploring new analytical approaches.

In addition to overdispersion, unmodeled hetero-
geneity in capture probability likely contributed to the 
bias in the N-mixture abundance estimates. Variation in 
capture probability is caused by numerous factors when 
electrofishing including environmental conditions, crew 
experience, electrofishing equipment and settings, and 
fish abundance and behavior (Tsuboi and Endou  2008; 
Benejam et  al.  2012; Hangsleben et  al.  2013). Thus, de-
spite sampling under relatively constant conditions, it is 
unlikely that capture probability was constant across our 
long-term data set (Figure  S4). Unmodeled heterogene-
ity in capture probability can cause bias in abundance 

estimates when using N-mixture models, and the bias can 
be more severe when capture probabilities are low, which 
is common in fisheries sampling (Barker et  al.  2018; 
Duarte et al. 2018; Link et al. 2018). We attempted to ac-
count for variation in capture probability using discharge; 
however, this resulted in high estimates of capture proba-
bility and low estimates of abundance for all species and 
sites. The estimates of capture probability were much 
higher than is typical for electrofishing surveys and were 
unrealistically high for some sites and species (i.e., 0.95 for 
Yellowstone Cutthroat Trout at Corwin Springs). The high 
capture-probability estimates are likely due to a relatively 
weak relationship between river discharge and capture 
probability at moderate values of discharge (approxi-
mately 56–142 m3/s), which is when most of the surveys 
were conducted (Figure S4). We hypothesize that capture 
probability is more strongly influenced by turbidity than 
by discharge (Korman and Yard 2017); however, there is 

F I G U R E  7   Estimates of the number of fish per kilometer using mark–recapture and mean capture probability methods for three trout 
species at two sites in the Yellowstone River, Montana, from 1978 to 2021.
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no long-term turbidity data set for the upper Yellowstone 
River. Incorporating environmental covariates, such as 
turbidity, could improve N-mixture abundance estimates 
for other fish populations and could be considered when 
using N-mixture models to analyze other long-term data 
sets. However, in the data set from the upper Yellowstone 
River, overdispersion will compromise the model fit even 
if covariates are used to account for the heterogeneity in 
capture probability. Both overdispersion and variable cap-
ture probabilities were present in the data set from the 
upper Yellowstone River; thus, the current data set is un-
suitable for use with N-mixture models.

Using N-mixture models to estimate the abundance of 
fish often utilizes large spatial replication and a suite of 
covariates to model capture probability across space and 
time (Mollenhauer and Brewer  2017; Som et  al.  2018; 
Huntsman et al. 2022). N-mixture models have been used 
to assess microhabitat use by juvenile salmonids (Som 
et  al.  2018) and estimate the abundance of Smallmouth 
Bass Micropterus dolomieu in streams (Mollenhauer and 
Brewer 2017). Both studies used covariates, including en-
vironmental conditions and habitat characteristics, to ac-
count for variation in capture probability. Covariates may 
also be used to model variation in abundance, especially 
in studies with high spatial replication (Acre et al. 2020). 
Future use of N-mixture models to monitor trout popula-
tions in Montana may be more feasible in systems where 
count data are collected across a larger spatial scale than 

in our study and in systems where a larger suite of covari-
ates is available, allowing for spatial and temporal varia-
tion in capture probability to be modeled more effectively.

Our mean capture probability results indicate that this 
method is not a suitable alternative to mark–recapture es-
timates for the data set. The mean capture probability esti-
mates both over- and underestimated abundance relative 
to the mark–recapture estimates, although overestimation 
was more common. The bias is likely related to heteroge-
neity in capture probability. Thus, including environmen-
tal covariates to model capture probability could improve 
future abundance estimates using the mean capture prob-
ability method. The utility of the mean capture probability 
method also depends on spatial scale and sampling meth-
odology. In the Snake River basin in Idaho, using a mean 
capture probability approach improved the precision of 
abundance estimates for juvenile Rainbow Trout that 
were captured via backpack electrofishing across a large 
spatial scale but did not result in precise estimates for each 
site (Mitro and Zale 2000). When applying the mean cap-
ture probability approach to a single site, as in our study, 
the variation in capture probability has a large influence 
on abundance estimates, creating the potential for bias. 
The mean capture probability method was successfully 
used to estimate the abundance of trout in small streams 
that were sampled by backpack electrofishing (Jones and 
Stockwell  1995). Sampling small streams with backpack 
electrofishing may result in lower variation in capture 

F I G U R E  8   Relative bias of mean capture probability estimates relative to mark–recapture abundance estimates using the overall mean 
capture probability for each site and species and a 3-year moving average of mean capture probability for three trout species at Corwin 
Springs and Mill Creek on the Yellowstone River, Montana. The lower and upper bounds of the box indicate the 25th and 75th quantiles, 
respectively, and the centers of the boxes indicate the median. The whiskers extend to 1.5 times the IQR both above and below the quantiles. 
The dashed line indicates a relative bias of 0, indicating that both methods resulted in identical abundance estimates.
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probability than sampling large rivers with boat electro-
fishing. Numerous biotic and abiotic factors, including fish 
density, turbidity, and shoreline angle, have been shown 
to influence the catchability of Rainbow Trout during boat 
electrofishing surveys (Korman and Yard 2017). We con-
sidered the use of additional covariates, including turbid-
ity and electrofishing effort, to model capture probability. 
However, measurements of these covariates only began 
recently and the short duration of the data set limited the 
utility of these covariates in our analysis (Figures S5–S8). 
Consistent collection of data on abiotic variables, such 
as habitat characteristics and environmental conditions, 
could improve mean capture probability analysis in the 
upper Yellowstone River in the future.

Due to limitations in the data set, both analytical meth-
ods that were used in this study resulted in biased abun-
dance estimates for trout in the Yellowstone River. Bias 
in abundance estimates of animal populations can arise 
when the assumptions of statistical models are violated 
(Pollock and Kendall 1987; Pierce 1997; Barker et al. 2018). 
When the sources of bias are well understood and result in 
consistent bias, correction factors can be applied, resulting 
in reliable estimates (Barlow et al. 2011; Saska et al. 2013). 
The results of the N-mixture models that were fit to the 
simulated data sets showed a consistent negative relative 
bias in abundance estimates. However, the N-mixture 
models that were fit to our real data sets showed such 
poor model fit that we find this analytical method to be 
unsuitable for our data set. In contrast, the mean capture 
probability estimates showed variable bias relative to the 
mark–recapture estimates. The spread of relative bias and 
the possibility for both over- and underestimation when 
using the mean capture probability method make a bias 
correction factor impractical.

Both the N-mixture models and mean capture prob-
ability analysis used our existing data set and sampling 
framework to estimate trout abundance in the upper 
Yellowstone River. Climate predictions suggest that the 
hydrologic regime will continue to change across the 
Greater Yellowstone ecosystem (Hostetler et  al.  2021), 
which will make spring electrofishing surveys increas-
ingly difficult. Although both analytical methods allowed 
us to obtain abundance estimates, albeit unreliable esti-
mates in our system, in years when a single electrofishing 
survey was conducted, these methods still depend on suit-
able discharge conditions for at least one survey to occur. 
Since the early-2000s, there have been 6 years in which 
flow conditions prevented any sampling in the Corwin 
Springs site and 3 years in which sampling could not occur 
in the Mill Creek site. Thus, adapting trout monitoring in 
the upper Yellowstone River will benefit from modified 
sampling methods in addition to novel analytical meth-
ods. Using alternative sampling gears, such as drift boats 

instead of jet boats, to conduct electrofishing surveys at 
lower flows will be considered. Additionally, we will in-
vestigate the feasibility of marking fish individually and 
using recapture data to estimate survival and abundance 
over time. Environmental conditions may also prompt 
managers to consider alternative metrics, such as relative 
abundance, that require less sampling effort than abun-
dance estimates.

Making necessary adaptations to long-term standard-
ized monitoring programs is a critical component of an 
adaptive monitoring framework and allows programs to 
accommodate changes to questions of interest, developing 
technologies, and new analytical techniques (Lindenmayer 
and Likens 2009). As the rate of environmental change ac-
celerates, incorporating new sampling methods and ana-
lytical techniques will become increasingly important for 
long-term monitoring programs. Adapting standardized 
monitoring methods for the upper Yellowstone River sys-
tem is vital for the management of the fishery. Climate 
change is influencing the trout populations in the upper 
Yellowstone River in multiple ways, including drought 
and low summer flows, disease outbreaks exacerbated 
by high temperatures, and flood events (Al-Chokhachy 
et al. 2017; Hutchins et al. 2021). High angling pressure 
and changing land and water use in the watershed are also 
influencing fish populations (Sage  2016; Lamborn and 
Smith  2019). Trout fisheries across Montana are experi-
encing similar stressors (Cline et  al.  2022), and changes 
to the hydrologic regime are making standardized moni-
toring more difficult in rivers across the state. Monitoring 
the responses of the trout population to multiple stressors 
is a crucial component of managing the important fish-
ery in the upper Yellowstone Rivers and others through-
out Montana. However, this presents a difficult problem: 
obtaining precise and unbiased abundance estimates with 
less-consistent and reduced sampling effort. Continuing 
to explore novel monitoring frameworks is important for 
the management of the trout fishery in the Yellowstone 
River and has implications for monitoring fish popula-
tions in large river systems across Montana and through-
out the western United States.
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