
MANAGEMENT BRIEF

Aerial Application of Organic Pellets Eliminates Lake Trout Recruitment
from a Primary Spawning Reef in Yellowstone Lake

Todd M. Koel * and Philip D. Doepke
U.S. National Park Service, Yellowstone Center for Resources, Native Fish Conservation Program, Post Office Box 168,
Yellowstone National Park, Wyoming 82190, USA

Drew J. MacDonald
U.S. National Park Service, Yellowstone Center for Resources, Native Fish Conservation Program, Post Office Box 168,
Yellowstone National Park, Wyoming 82190, USA; and Montana Cooperative Fishery Research Unit, Department of
Ecology, Montana State University, MSU Post Office Box 173460, Bozeman, Montana, 59717, USA

Nathan A. Thomas1 and Cody W. Vender
U.S. National Park Service, Yellowstone Center for Resources, Native Fish Conservation Program, Post Office Box 168,
Yellowstone National Park, Wyoming 82190, USA

Hayley C. Glassic2 and Alex S. Poole3

Montana Cooperative Fishery Research Unit, Department of Ecology, Montana State University, MSU Post Office
Box 173460, Bozeman, Montana, 59717, USA

Christopher S. Guy and Alexander V. Zale
U.S. Geological Survey, Montana Cooperative Fishery Research Unit, Department of Ecology, Montana State University,
MSU Post Office Box 173460, Bozeman, Montana 59717, USA

Abstract
Invasive Lake Trout Salvelinus namaycush in the Yellowstone Lake ecosystem have been gillnetted since 1995 to

suppress the population and allow for recovery of native Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri.
Although gillnetting is effective (Lake Trout population growth rate λ≤ 0.6 during 2012–2022), the effort only targets
free-swimming, age-2 and older Lake Trout. We developed a complementary suppression method using organic (soy
and wheat) pellets to cause Lake Trout embryo mortality and reduce recruitment from spawning areas. The entire
Carrington Island spawning reef (0.5 ha) was aerially treated with 3.56 and 3.00 kg/m2 of pellets in 2019 and 2020,
respectively. Pellet decomposition caused dissolved oxygen concentrations to decline to lethal levels at 20 cm depth in
the substrate, and pellets mostly dissipated from the reef within 12 d. Lake Trout fry trap CPUE was reduced to zero
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after ice-off each spring after the treatments. Prior to the treatments, 71 fry were captured during 58 trap-nights of
effort in 2017–2019. After the treatments, no fry were captured during 273 trap-nights in 2020 and 2021. Lake Trout
CPUE in large-mesh gill nets set near Carrington Island in September did not decline during 2017–2021 and fry were
again trapped on the reef in spring 2022, suggesting that adults were not deterred from spawning there in the years
after the pellet treatments. Complementary methods that increase mortality of prerecruits may allow for a reduction
in gill-netting effort and the long-term costs of maintaining Lake Trout population suppression in Yellowstone Lake.
Treatment of spawning areas may improve suppression efficiency for Lake Trout and invasive fish populations else-
where because entire cohorts are targeted while immobile and temporarily concentrated in relatively small areas.

Invasive fish have caused ecological and economic
damage worldwide by altering aquatic communities and
disrupting natural ecosystem processes (Leprieur
et al. 2008; Gallardo et al. 2016; Cuthbert et al. 2021).
Invasive fish are particularly detrimental (O'Gorman
et al. 2021) in the western United States, where fish species
richness is naturally low, causing declines in native and
popular wild sport fish populations through predation
(Ruzycki 2004; Loppnow et al. 2013; Sepulveda
et al. 2013), competition (Donald and Alger 1993; Roth
et al. 2020; Wainright et al. 2021), and hybridization
(Kovach et al. 2011; Mandeville et al. 2019; Heim
et al. 2020). Invasive piscivores are especially harmful
because they often add a novel predatory trophic level,
resulting in trophic cascades that alter the structure of
aquatic and terrestrial food webs (Ellis et al. 2011; Koel
et al. 2019; Wainright et al. 2021). Managers have imple-
mented invasive fish suppression programs to facilitate
recovery of desirable fish populations and natural ecosys-
tem function (Fredenberg et al. 2017; Hansen et al. 2019a;
Healy et al. 2020).

Discovery of an invading fish species imparts a new
unplanned burden on management agencies. In large
aquatic ecosystems, invading fish cannot be eradicated
(Britton et al. 2011; Rytwinski et al. 2018), thus requiring
long-term commitments to maintain population suppres-
sion (Hansen et al. 2019b; Sorensen 2021). Cost-effective
suppression is essential because resources are limited
(Buhle et al. 2005). An integrated pest management (IPM)
approach, which is most widely used in terrestrial systems
(Flint and Van den Bosch 1981; Peshin et al. 2009), incor-
porates a variety of methods to target multiple life stages
of an injurious species to increase suppression efficacy
(FAO 1968; Dent 1995; Ehler 2006). For example, adult
double-crested cormorants Nannopterum auritum are
culled to reduce predation on fish populations in North
America (Dorr et al. 2010; Schultz et al. 2013). Oiling of
ground-nested cormorant eggs is used in an IPM approach
to prevent hatching and consumption of fish by fledgling
birds during a period of rapid individual growth (McGre-
gor and Davis 2012; Ridgway et al. 2012; Dorr and
Fielder 2017). Similarly, the Sea Lamprey Petromyzon
marinus suppression program in the Laurentian Great
Lakes uses pheromone attractants, migration barriers, che-
mical treatments, and other methods in combination to

control this aquatic invasive species (Sawyer 1980; Christie
and Goddard 2003; Johnson et al. 2009). Successful pest
control programs in terrestrial ecosystems and the Lauren-
tian Great Lakes serve as models for an IPM approach
elsewhere.

Lake Trout Salvelinus namaycush were introduced into
the western United States outside of their native range
(Crossman 1995; Martinez et al. 2009) and have made
invasive movements through river networks (Muhlfeld
et al. 2012; Koel et al. 2020b), causing extensive declines
in native and desirable sport fish populations (Vander
Zanden et al. 2003; D'Angelo and Muhlfeld 2013; Hansen
et al. 2016; Dux et al. 2019). Since 1995, an invasive Lake
Trout population in Yellowstone Lake, Yellowstone
National Park, has been suppressed with gill nets to con-
serve native Yellowstone Cutthroat Trout Oncorhynchus
clarkii bouvieri and restore natural ecological processes
(Koel et al. 2019, 2020a). Despite annual increases in gill-
netting effort (Syslo et al. 2011), fishing mortality was not
high enough to reduce adult biomass until 2012 (Koel
et al. 2020a). Annual abundance of adult Lake Trout has
declined each year since 2012 (Syslo et al. 2020), and age
structure has shifted to fewer older fish, but the abundance
of Lake Trout recruits (age 2) has varied, with no declin-
ing trend (Koel et al. 2022). Lake Trout embryos in Yel-
lowstone Lake benefit from a lack of intraspecific
competition and predators, thereby increasing survival
rates (Bolnick et al. 2010; Syslo et al. 2020; Koel
et al. 2020a). The high survival rates reduce the likelihood
of recruitment overfishing and stock collapse (Zipkin
et al. 2009; Ohlberger et al. 2011; Schröder et al. 2014).

Lake Trout population growth rates are sensitive to
changes in age-0 survival (Ferreri et al. 1995; Cox
et al. 2013); therefore, we sought methods that increase
prerecruit mortality (Doepke et al. 2017) to mimic the
mortality that occurs in the native range of Lake Trout
(Marsden et al. 1995; Fitzsimons et al. 2002; Claramunt
et al. 2005; Riley and Marsden 2009). Specifically, we
intentionally reduced the dissolved oxygen (DO) concen-
tration within substrate interstices of Lake Trout spawning
reefs in Yellowstone Lake because salmonid embryos are
highly susceptible to degraded water quality (Gunn and
Keller 1984; Haines and Baker 1986; Sly 1988). Rapid
mortality of Lake Trout embryos occurs when DO con-
centrations are below 3.4 mg/L (Garside 1959; Carlson
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and Siefert 1974; Koel et al. 2020c). We began by placing
Lake Trout carcasses from the gill-netting suppression
program onto spawning reefs (Thomas et al. 2019; Poole
et al. 2020). However, gill-netting operations end in mid-
October with the onset of winter conditions. The short
amount of work time (2–3 weeks) and the reduced avail-
ability of carcasses after the September spawning period
forced us to pursue an alternative organic material.

Organic pellets were originally developed as carcass
analogs to restore nutrients in areas where decomposition
of anadromous salmonids had historically contributed
to stream productivity (Wipfli et al. 2004; Pearsons
et al. 2007; Benjamin et al. 2020). Experimental applica-
tion of organic (soy and wheat gluten) pellets on Lake
Trout spawning substrates was highly effective at causing
in situ embryo mortality (Koel et al. 2020c). Biological
oxygen demand of the decomposing pellets caused DO to
decline to 0 mg/L soon after most treatments and was
probably the primary cause of high embryo mortality
(Garside 1959; Carlson and Siefert 1974). Decomposition
probably also caused changes in other water quality para-
meters, such as increases in carbon dioxide (CO2) and
hydrogen sulfide (H2S), which are known to harm early
life stages of salmonids (Sly 1988). Regardless of the
mechanisms, embryo mortality effects at various levels of
organic pellet biomass justified further investigation into
applications on a larger scale.

Our goal was to apply organic pellets to an entire Lake
Trout spawning reef at a biomass sufficient to reduce fry
production while not deterring adults from spawning at
the reef during the following year, which could jeopardize
future suppression efforts. Our specific questions were (1)
“Could an adequate amount of pellets be transported and
applied to a spawning reef and completely cover the inter-
stices of the spawning substrate?”; (2) “Given wave action
and lake currents, would pellet material remain in the sub-
strate interstices long enough to create hypoxia or other-
wise cause embryo mortality and curtail the recruitment
of fry the following spring?”; and (3) “Would Lake Trout
adults return undeterred to the treated reef to spawn in
subsequent years?”

STUDY AREA
Yellowstone Lake is a large, temperate, meso-

oligotrophic lake on the Yellowstone Plateau (2,357 m in
elevation), with a highly protected watershed (>3,200 km2)
located within Yellowstone National Park and the
Bridger-Teton Wilderness, Wyoming (Figure 1). Geologic
processes contributed to the unusual shape of Yellowstone
Lake, which straddles the southeastern margin of the
Greater Yellowstone Volcanic Caldera (Morgan
et al. 2003). Yellowstone Lake has a surface area of
34,000 ha, a mean depth of 48 m, a maximum depth of

137m, a volume of 1.5 × 1010 m3, and 239 km of shoreline
(Kaplinski 1991), with an abundance of productive littoral
areas. Ice covers the lake from late December through late
May, and the lake's thermal structure is typically unstable,
with a weak and variable thermocline during July, August,
and September (Koel et al. 2019, 2020a). About one-third
of Yellowstone Lake, including the West Thumb basin
(also a volcanic caldera), is directly influenced by hydro-
thermal activity through hot-water vents and fumaroles
(Knight 1975; Aguilar et al. 2002; Morgan et al. 2022).
Fourteen Lake Trout spawning reefs were identified (11.4
ha, 0.03% of lake surface area; Figure 1) over the past
two decades by gillnetting of spawning fish and by locat-
ing telemetered fish; spawning at these reefs was verified
based on the presence of Lake Trout embryos (Koel
et al. 2020c). Spawning habitat for Lake Trout is pre-
dicted to be abundant (Bigelow 2009); therefore, addi-
tional, yet-unverified Lake Trout spawning reefs probably
exist (Williams et al. 2022). The reef surrounding Carring-
ton Island in the West Thumb basin was confirmed as a
spawning reef in 1996 (Ruzycki 2004), 2 years after the
initial discovery of Lake Trout (Kaeding et al. 1996), and
this reef continues to be one of the most highly used
spawning reefs in Yellowstone Lake (Williams

FIGURE 1. The Carrington Island Lake Trout spawning reef (0.5 ha)
near the western (leeward) shoreline of the West Thumb basin of
Yellowstone Lake, Wyoming. Volcanic forces shaped much of
Yellowstone Lake, including the West Thumb. Now, numerous
hydrothermal vents (white circles) on the lake floor input heat, influence
water chemistry, and may enhance growth of Lake Trout fry emerging
from the Carrington Island reef and other known spawning areas in this
lake basin.
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et al. 2022). The Carrington Island spawning reef consists
of large rock, cobble, and embedded rock substrate, with
a spatial extent of 0.5 ha and depths of 0–4 m on all sides
of the island, which is located on the leeward side of West
Thumb basin, with little fetch (Figures 1 and S1 [available
in the Supplement in the online version of this article]).

METHODS
Organic pellet application.— Plant-based sinking pellets

(~4.2 mm in diameter) were originally created at the Feed
and Nutrition Laboratory of the U.S. Fish and Wildlife
Service's Bozeman Fish Technology Center in Montana
(see Supplementary Materials in Koel et al. 2020c for
details of the ingredients used). Based on earlier in situ
experiments, a pellet application density of 1.75 kg/m2 was
expected to achieve embryo mortality greater than 75% in
treated areas at 20 cm depth within substrate interstices.
A higher pellet density of 3.5 kg/m2 was required to
achieve near 100% mortality at 20 cm depth and at the
substrate surface (Koel et al. 2020c). Therefore, treating
the entire spawning reef at Carrington Island (0.5 ha) at a
density of 3.5 kg/m2 would require 17,500 kg of pellets.
Rangen, Inc. (Buhl, Idaho), produced 17,800 kg (3.56 kg/
m2) and 15,000 kg (3.00 kg/m2) of pellets during late Sep-
tember in 2019 and 2020, respectively. The cost of the pel-
lets, including delivery to Yellowstone Lake, was US
$22,500 each autumn. A feed truck-mounted auger was
used to fill seeder/spreader hoppers (Isolair Helicopter Sys-
tems; 2,600-45G Dryslinger II; 1.27-m3 capacity, 118-kg
net weight, 10.1-kW [13.5-hp] gasoline motor), which are
commonly used in terrestrial systems for broadcast seed-
ing, herbicide and pesticide distribution, and reforestation
(Figure S2). Huey helicopters (Bell UH-1H) with long
lines were used to transport the Isolair spreaders and
apply the pellets to the Carrington Island spawning reef,
the outer margins of which had been marked with surface
buoys (Figure S1). High-velocity downdraft from the heli-
copter rotors drove the pellets down into the water and
onto the reef with little drift (Figures S3 and S4;
Video S1). Pellet applications incurred total helicopter
flight times of 6.6 h ($24,100) on October 3, 2019, and 6.0
h ($28,400) on October 5, 2020.

We photographed three 1-m2 quadrats using a digital
camera (GoPro HERO5; 2.3 megapixels) to monitor pellet
dissipation from the spawning reef. ImageJ software (Ras-
band 2018) was used to estimate the percent area of each
quadrat covered by pellets at 1 and 12 d posttreatment in
2019. Dissolved oxygen concentrations (mg/L) before and
after treatment were recorded using miniDOT loggers
(Precision Measurement Engineering; 60-min sampling
interval) at eight locations on the substrate surface of the
Carrington Island spawning reef in 2019 and on the sub-
strate surface and at 20 cm depth within substrate

interstices in 2020. No loggers were placed at 20 cm depth
in 2019. One of the eight loggers at 20 cm depth was not
recovered in 2020.

Assessing fry production and adult deterrence.— To
assess the effectiveness of pellet treatments for causing age-0
Lake Trout mortality, we placed emergent fry traps (like
those described by Marsden et al. 1988) on the Carrington
Island spawning reef during a 14-d period each spring
immediately after ice-off (typically late May) in 2017–2022.
The traps were steel-mesh cones with 73-cm-diameter bases;
1-L bottles containing inverted funnels on top of the traps
captured fry rising from underneath (Figure S5). The traps
were marked with surface buoys and were inspected for the
presence of fry by lifting them to the surface about twice per
week. Trapping effort was relatively low prior to the pellet
treatments; effort was 24, 24, and 10 trap-nights in 2017,
2018, and 2019, respectively. After the pellet treatments, we
increased our effort to 126 and 147 trap-nights during 2020
and 2021, respectively. Moreover, we continued fry trap-
ping through June to further assess fry production during
both springs after the pellet treatments; the additional effort
was 135 and 330 trap-nights during 2020 and 2021, respec-
tively. Control fry traps were placed on an untreated spawn-
ing reef, Thomas Bank in the Flat Mountain Arm (Figure 1
inset), with an effort of 75, 157, and 140 trap-nights in 2020,
2021, and 2022, respectively.

To assess adult Lake Trout deterrence from spawning at
the Carrington Island reef in the years after the pellet treat-
ments, we (1) used the CPUE of large-mesh (44–76-mm bar
measure) gill nets that were set to suppress aggregations
near the reef during autumn, (2) used the CPUE of large-
mesh gill nets that were set near Thomas Bank and four
other spawning reefs in the Flat Mountain Arm, and (3)
continued fry trapping on the Carrington Island reef, with
an effort of 140 trap-nights in spring 2022. During 2017–
2021, gill nets were set with start depths of 2–21m (mean = 9m)
and end depths of 2–53m (mean = 29 m) near the Carring-
ton Island reef and within the Flat Mountain Arm in Sep-
tember (Figure 1), the month when Lake Trout spawning
peaked in Yellowstone Lake (Williams et al. 2022). A total
of 10,282 gill-net effort units (1 effort unit = 100 m of gill
net set for one night) was expended over the five spawning
periods, with a low of 1,915 effort units in 2019 and a high
of 2,184 effort units in 2020 (mean = 2,056 effort units).
Gill-netted Lake Trout were killed by piercing their air
bladders with a knife and were deposited in deep (>60-m)
lake regions in accordance with normal suppression proce-
dures in Yellowstone Lake (Koel et al. 2020a).

Data collection and analysis.— The effect of pellets on
the distribution of fry trap CPUE (number of fry per trap-
night during spring) among 6 years (2017–2022) was deter-
mined using a Kruskal–Wallis test because the data did
not meet the assumption of normality. Dunn's post hoc
nonparametric pairwise multiple comparison procedure

4 KOEL ET AL.
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was used to test for differences between years based on
rank sums (α = 0.05; Dinno 2015). One-way ANOVA was
used to evaluate for differences in mean large-mesh gill-
net CPUE (number of adults/100 m of gill net nightly dur-
ing autumn) among 5 years (2017–2021), and the Tukey–
Kramer post hoc multiple comparison procedure was used
to test for differences among years (α = 0.05) because the
data were normally distributed. Data were analyzed using
the dplyr (Wickham et al. 2022), FSA (Ogle et al. 2022),
and car (Fox and Weisberg 2019) packages in R version
4.2.0 (R Core Team 2022).

RESULTS
Visual inspections confirmed that the Carrington Island

spawning reef interstices were covered with pellets

immediately after the applications (Figure S4). However,
pellet persistence was minimal within 2 weeks posttreat-
ment. Pellet coverage across all of the substrate (including
exposed rock surfaces) was 40.3–51.3% on October 4,
2019 (1 d after the treatment) and was reduced to 0.3–
17.4% by October 15, 2019 (12 d after the treatment; Fig-
ure 2). The DO concentration at the substrate surface in
2019 varied but did not decline to lethal levels for Lake
Trout embryos (<3.4 mg/L) at most logger locations. In
2020, DO levels did not decline at any of the eight loggers
deployed at the substrate surface; however, DO rapidly
declined to lethal levels at six of the seven loggers recov-
ered at 20 cm depth within the substrate (Figure 3). The
one 20-cm-deep logger that did not record lethal DO was

FIGURE 2. (A) Photographs on three sides of the Carrington Island
spawning reef in 2019 after organic pellet treatment and (B) the same
photographs enhanced with ImageJ software (Rasband 2018) to further
highlight pellets (in white) and estimate dissipation. Pellet coverage
across all of the substrate (including exposed rock surfaces) was 40.3–
51.3% 1 d after the treatment (October 4; upper panels) and was reduced
to 0.3–17.4% 12 d after the treatment (October 15; lower panels).

FIGURE 3. Mean daily dissolved oxygen (DO) concentrations (mg/L) at
0 cm (substrate surface) and at 20 cm below the substrate surface,
measured before and after organic pellet treatment on October 5, 2020
(vertical solid line), at the Carrington Island spawning reef. Colored lines
are from loggers that indicated a decline in DO to lethal concentrations
(<3.4 mg/L). Dashed lines represent DO levels from loggers on the south
end of the spawning reef, where prevailing currents supplied oxygenated
water. Solid lines represent DO levels from loggers on the north end of
the spawning reef, which received less oxygenated water and more pellet
material (Figure S4).

MANAGEMENT BRIEF 5
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located on the south end of the spawning reef, where pre-
vailing currents (south to north; Figure S4) supplied oxy-
genated water during the treatments in both years.

Distributions of Lake Trout fry trap CPUE at the Car-
rington Island spawning reef differed among the 6 years
(Kruskal–Wallis H = 105.09, df = 5, P = 2.2 × 10−16).
Post hoc pairwise comparisons suggested that the pellet
treatments reduced Lake Trout fry trap CPUE. In years
with no pellet treatment occurring the previous autumn
(2017–2019, 2022), a total of 189 Lake Trout fry was cap-
tured with 198 trap-nights of effort and the median fry
trap CPUE was 0.50 (interquartile range [IQR] = 0.75),
0.00 (IQR = 0.75), 3.50 (IQR = 6.00), and 0.60
(IQR = 0.80) fry/trap-night in 2017, 2018, 2019, and 2022,
respectively (Figures 4 and S6). In the years after pellet
treatments, no fry were captured during a total of 273
trap-nights of effort; median fry trap CPUE declined to
0.00 fry/trap-night (IQR = 0.00) in both 2020 and 2021.
Additional effort of 135 and 330 (465 total additional)
trap-nights through June in 2020 and 2021, respectively,
resulted in the capture of one fry during 2020. The
untreated Thomas Bank (control) spawning reef continued
to produce fry, but distributions of Lake Trout fry trap
CPUE differed among years (Kruskal–Wallis H = 17.13,
df = 2, P = 1.9 × 10−4). A total of 130 fry was captured
with 372 trap-nights of effort, and the median fry trap
CPUE was 0.25 (IQR = 1.12), 0.00 (IQR = 0.00), and
0.00 (IQR = 0.30) fry/trap-night in 2020, 2021, and 2022,
respectively (Figure S7).

Pellet treatments did not deter Lake Trout adults from
spawning on the Carrington Island reef in subsequent years,
as indexed by large-mesh gill-net CPUE from 2017 to 2021
(Figures 1 and 5; ANOVA: F4, 25 = 1.954, P = 0.133). Prior

to the pellet treatments, mean gill-net CPUE was 1.3 (95%
CI = 0.8–1.8), 1.0 (95% CI = 0.2–1.8), and 0.8 (95%
CI = 0.5–1.2) adults/100 m of net nightly in 2017, 2018, and
2019, respectively (Figure 5). After the pellet treatments,
gill-net CPUE remained unchanged, with a mean of 0.6
(95% CI = 0.2–0.9) and 0.8 (95% CI = 0.1–1.6) adults/100
m of net nightly in 2020 and 2021, respectively. Pellet treat-
ments of Carrington Island did not increase adult CPUE
elsewhere. Large-mesh gill-net CPUE within the
Flat Mountain Arm declined (ANOVA: F4, 84 = 15.687,
P = 1.263 × 10−9). Mean gill-net CPUE was 1.5 adults/100
m of net nightly (95% CI = 1.1–2.0) in 2017 and declined to
0.6 (95% CI = 0.4–0.7), 0.6 (95% CI = 0.4–0.7), 0.5 (95%
CI = 0.4–0.7), and 0.6 (95% CI = 0.5–0.7) adults/100 m of
net nightly in 2018, 2019, 2020, and 2021, respectively
(Figure S8).

DISCUSSION
The realization that high survival of prerecruit Lake

Trout may offset increased gill-net mortality of older age-
classes heightened our interest in an IPM approach with
complementary suppression methods targeting prerecruit
life stages in Yellowstone Lake (Koel et al. 2020a). Size-
or age-selective mortality (i.e., uneven mortality across
life stages; sensu Karatayev et al. 2015) of suppressed (gill-
netted) Lake Trout may be increasing juvenile recruitment
and total population abundance through an overcompen-
satory response (Schröder et al. 2014; Grosholz
et al. 2021). Although predation on Yellowstone Cut-
throat Trout is reduced, density-dependent processes may
be confounding removal efforts (Zipkin et al. 2008, 2009;
Evangelista et al. 2015; Weber et al. 2016; Walsworth

FIGURE 4. Lake Trout fry trap CPUE (number of fry/trap-night) at the Carrington Island spawning reef during 14-d periods immediately after ice-
off (typically late May) in 2017–2022. Fry trap sampling in 2020 and 2021 followed treatments with organic pellets during the previous October; for
all other years, no treatments occurred during the previous year. Boxes represent the interquartile range (IQR), the black horizontal line in each box is
the median, and the bars above and below each box are the maximum (Q3 + 1.5*IQR) and minimum (Q1 − 1.5*IQR) values, respectively. The black
circles are data outliers, the gray cloud is the shape of the data distribution, and n is the number of trap-nights. The same letters (x–z) above each year
indicate no difference in the distribution of CPUE (α = 0.05).
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et al. 2020). We sought methods to reduce prerecruit sur-
vival and offset these effects (Hilborn and Walters 2021).
We demonstrated that organic pellets can be transported
and applied across an entire spawning reef in a large sub-
alpine lake to induce decomposition and localized reduc-
tion of DO through increased biological oxygen demand,
thereby increasing the mortality of invasive prerecruit fish
(Koel et al. 2020c). The method did not cause deterrence
of spawning adults, which would further complicate popu-
lation suppression in future years.

Treatment of spawning areas to suppress invasive
prerecruits is appealing because an entire cohort is immo-
bile and temporarily concentrated in small areas of Yel-
lowstone Lake. Free-swimming juvenile and adult life
stages are far more widespread and challenging to remove,
especially when occurring in sympatry with desired species
(Britton et al. 2011; Hansen et al. 2019b). The strategy
requires locating spawning areas and documenting their
relative use, which for Lake Trout can be accomplished
by acoustic telemetry of adults during autumn (Flavelle
et al. 2002; Dux et al. 2011; Siemiantkowski et al. 2022;
Williams et al. 2022). In addition, microhabitats consisting
of the most suitable (and productive) substrate are typi-
cally located within large spawning areas (Marsden
et al. 1995; Muir et al. 2012). These microhabitats can be
located by fine-scale telemetry of spawning adults (Binder
et al. 2018) or visually by scuba divers or remotely oper-
ated vehicles (Farha et al. 2020). The spatial extent of
these microhabitats can be delineated using side-scan
sonar (Richter et al. 2016; Dow 2018; Siemiantkowski

et al. 2022) and then can be specifically targeted to
increase prerecruit suppression efficiency.

Assumptions of our study were that the timing of Lake
Trout fry dispersal from the Carrington Island spawning
reef did not vary greatly among years and that the
absence of fry production on the Carrington Island reef in
2020 and 2021 was not caused by confounding factors
other than the pellet treatments. Lake Trout in Yellow-
stone Lake spawn earlier than other invasive (Dux
et al. 2011; Siemiantkowski et al. 2022) and native (Mars-
den et al. 2005) populations at similar latitudes, and water
temperatures at most known Yellowstone Lake spawning
areas could facilitate hatching (Koel et al. 2020a), emer-
gence, and potentially dispersal months earlier than these
events would occur within the native range of the species
(Krueger and Ihssen 1995; Ladago et al. 2016). Yellow-
stone Lake fry contained more food, dispersed later, and
achieved a greater maximum length before dispersal than
did fry in Lake Champlain, Vermont, within the Lake
Trout's native range (Simard et al. 2020). Dispersal from
the Carrington Island spawning reef before mid-summer
in any year was therefore unlikely. Moreover, fry were
captured in fry traps placed at Thomas Bank and other
spawning reefs during the spring in 2020 and 2021, indi-
cating that the complete absence of fry at Carrington
Island in those years was probably caused by the pellet
treatments.

Treatment of spawning reefs with organic material may
unintentionally increase primary production through nutri-
ent addition or may reduce abundances of nontarget benthic

FIGURE 5. Lake Trout CPUE (number of adults/100m of gill net nightly) in large-mesh gill nets set near Carrington Island during the Lake Trout
spawning period in September of 2017–2019 (years with no pellet treatment occurring in the previous year) and 2020–2021 (years with a pellet treat-
ment occurring in the previous year). Boxes represent the interquartile range (IQR), the black horizontal line in each box is the median, and the bars
above and below each box are the maximum (Q3 + 1.5*IQR) and minimum (Q1 − 1.5*IQR) values, respectively. The black circle is the mean with
95% CI (black error bar), and the gray cloud represents the shape of the data distribution. The same letter (z) above each year indicates no difference
in CPUE (α = 0.05).
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macroinvertebrates through DO limitation. Nitrogen and
phosphorus co-limited periphyton before the spawning reef
treatments but not after (Lujan et al. 2022). However, the
ingredients in the pellets (vitamin E, phytoestrogen, and soy-
bean oil) reduced the growth of primary producers, possibly
offsetting the increased growth caused by nutrients (Lujan
et al. 2022). The probability of mortality of limnephilid cad-
disflies was more than three times higher in organic (carcass)
treated spawning reefs than in control reefs, whereas mortal-
ity of the amphipods Gammarus lacustris and Hyalella
azteca did not differ (Briggs et al. 2021). Amphipods are
abundant and make up a large proportion of fish diets in
Yellowstone Lake (Glassic et al. 2021; Glassic 2022). Never-
theless, adverse ecosystem-scale effects are unlikely (Sie-
miantkowski et al. 2022) because the total surface area of all
14 known spawning reefs (11.4 ha) represents only 0.03% of
the surface area of Yellowstone Lake (Koel et al. 2020c) and
pellets are applied in autumn, thus providing sufficient time
for decomposition and dispersal before the growing season.
Accordingly, only limited short-term ecological effects were
detected after treatments with organic material (Lujan 2020;
Briggs et al. 2022). However, if pellet treatments are imple-
mented at a larger scale in the future, monitoring will assess
nutrient dynamics and whole-lake metabolism to guide man-
agement practices if unintended effects are detected. If
needed, the trophic effects of pellet additions (3.6% N) could
be countered by the removal of gill-netted Lake Trout car-
casses (about 11% N).

Suppression of Lake Trout prerecruits may be inconse-
quential if the mortality caused by pellet treatments is not
additive; survival of prerecruits is naturally low (Hea-
ley 1978). Although the relative contribution to recruit-
ment from each of the 14 spawning reefs in Yellowstone
Lake is unknown, we contend that Carrington Island is
among the most productive because it was the first spawn-
ing reef discovered during the early stages of the Lake
Trout invasion (Ruzycki 2004), it has higher-quality
spawning substrate than most other known spawning
areas (angular rock with abundant interstices; Koel
et al. 2020c), and it continues to rank highest based upon
individual days of use (product of mean individuals per
survey and mean length of stay) by telemetered spawning
adults (Williams et al. 2022). Telemetry studies have
demonstrated that Lake Trout in Yellowstone Lake exhi-
bit low spawning reef fidelity (Williams et al. 2022). The
high amount of suppression gillnetting on spawning reefs
could be altering behavioral traits (Uusi-Heikkilä
et al. 2008; Diaz Pauli and Sih 2017), selecting for fish
that move more among reefs and that use a broader range
of spawning substrate types, some of which are less suita-
ble (e.g., cobble embedded in sand). Although adults
probably dispersed to or from other nearby spawning reefs
during our study period (Binder et al. 2016), telemetered
spawning adults continued to use the Carrington Island

spawning reef (Williams et al. 2022). Prerecruit survival in
Yellowstone Lake is estimated to be four to six times
greater than survival rates within the native range (Syslo
et al. 2020) because of ecological release from predators
(Keane and Crawley 2002; Bolnick et al. 2010). However,
if the Carrington Island spawning reef has been dispropor-
tionately productive due to being pioneered early in the
invasion, high days of individual use by adults, growth
and size-based advantages (Miller et al. 1988; Houde 1997;
Sogard 1997; Stige et al. 2019), behavioral advantages
(Crowder et al. 1997), or other factors enhancing
prerecruit survival (Anderson 1988), the pellet-induced
mortalities may be additive (Allen et al. 1998; Allen and
Hightower 2010) and contribute to the lakewide Lake
Trout population decline.

CONCLUSIONS
Population models indicate that focusing suppression

effort on adults is the best strategy for controlling invasive
Lake Trout in the western USA (Hansen et al. 2016,
2019a; Syslo et al. 2020); however, incorporating methods
that suppress early life stages may also benefit these pro-
grams (Syslo et al. 2013; Glassic 2022). Yellowstone Lake
is naturally low in species richness, and Lake Trout solely
occupy the top (fourth piscivorous) trophic level (Tronstad
et al. 2010). Because no native predator fills this niche,
suppression gill netting is currently the only large-scale
regulatory factor preventing a Lake Trout population
rebound. The degree to which gill-netting effort could be
reduced after population goals are achieved while also
maintaining suppression is uncertain (Syslo et al. 2020;
Koel et al. 2020a). Complementary methods that target
prerecruits in an IPM approach may increase efficiency
and reduce the uncertainty and costs of maintaining gill-
netting suppression over the long term. The cost of elimi-
nating Lake Trout recruitment from the Carrington Island
spawning reef was about $50,000 over a period of 1–2 d
annually. Pellet treatments while cohorts are concentrated
on all known spawning reefs (11.4 ha) would require
199,500 kg of pellets at a cost of $250,000 and may ulti-
mately reduce the more than $2 million spent annually on
gill-netting suppression of free-swimming life stages in
Yellowstone Lake (Koel et al. 2020c). Moreover, treat-
ment of spawning reefs with pellets does not elicit deter-
rence by Lake Trout adults and avoids the Yellowstone
Cutthroat Trout bycatch mortality incurred by suppres-
sion gill nets. The effect of eliminating recruitment from
the Carrington Island spawning reef on the lakewide Lake
Trout population remains unknown. However, additional
spawning reefs in Yellowstone Lake are also suitable for
aerial application of pellets due to their shallow depths
and relative proximity to roads and helicopter landing
zones (Koel et al. 2020a, 2020c), and these areas could be

8 KOEL ET AL.

 15488675, 0, D
ow

nloaded from
 https://afspubs.onlinelibrary.w

iley.com
/doi/10.1002/nafm

.10872 by C
hristopher G

uy - M
ontana State U

niversity L
ibrary , W

iley O
nline L

ibrary on [06/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



treated to cause additional mortality of prerecruits.
Research and development of new, additional complemen-
tary suppression methods in the future should focus on
deeper, more remote spawning reefs that may be less sui-
table for aerial application of pellets.
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