
Fisheries | www.fisheries.org  539
© 2019 American Fisheries Society
DOI: 10.1002/fsh.10272

ESSAY

Creating Figures in R that Meet the 
AFS Style Guide: Standardization 
and Supporting Script
Hayley C. Glassic  | Montana Cooperative Fishery Research Unit, Department of Ecology, Montana State University, Bozeman, 
MT 59717. E-mail: hcg0509@gmail.com

Kurt C. Heim  | Department of Ecology, Montana State University, Bozeman, MT

Christopher S. Guy  | U.S. Geological Survey, Montana Cooperative Fishery Research Unit, Department of Ecology, Montana 
State University, Bozeman, MT

Visual display of information in scientific and non- 
scientific literature is the most efficient way to summarize 
large amounts data, focus the readers’ attention on patterns, 
and substantiate the message in the narrative. Figures often 
represent years of data collection and substantial monetary 
investment, and it is worth repeating the cliché “a [figure] is 
worth a thousand words.” Well- designed figures are usually 
simple, yet their ability to relate complex information through 
simplicity makes them powerful (Tufte 2001). Figures are 
often the focal point of articles when scientists, science com-
municators, and policy makers are quickly searching for sci-
entific information. Scientists in academia ranked figures and 
tables as the most important component of research articles 
(Hubbard and Dunbar 2017); moreover, figures quickly be-
come the focus when discussing articles among colleagues or 
in a classroom setting. If  created effectively in combination 
with a well- articulated figure caption, figures convey complex 
information readily for the reader to make a conclusion about 
results without reading details presented in the narrative. This 
is especially important as the quantity of research articles con-
tinues to increase exponentially in the 21st century, as does 
the number of journals with specific figure guidelines (Jinha 
2010).

Scientific journals have their own guidelines for con-
structing figures, and in this article we focus on the American 
Fisheries Society (AFS) style guide (Table  1). The AFS fig-
ure guidelines for publications are simple and allow for some 
creativity. In addition to journal- specific guidelines, generally 
suggested practices exist for figure design such as ensuring the 
figure provides the correct message for the audience (Rougier 
et al. 2014; Table 2), making legends or captions clear and suc-
cinct (Moon 2012), and limiting the messages communicated 
by a figure to facilitate easy and efficient interpretation (Moon 
2012; Table 2).

Many programs are available for scientists when creating 
publication- quality figures including those with graphical 
user interfaces (GUIs) such as Microsoft Excel (Microsoft 
Corporation) and SigmaPlot (Systat Software Inc.), and those 
without including Matlab (MathWorks), SAS (SAS Institute), 
and R (R Core Team). Additionally, integrated development 
environments such as RStudio (Rstudio, Inc.) and SAS Studio 
(SAS Institute) provide many tools for source code editing, 
debugging, saving work and projects, and making graphics. 
All environments have advantages and disadvantages with re-
gards to ease of use, flexibility, and software expense that can 

vary from free to thousands of dollars. The popularity of R, 
in particular, has increased rapidly in the past decade because 
it is free and includes many contributed packages for powerful 
analyses applicable to many fields of research. Also,  because 
R  is one of the primary analytical tools used in statistics 
courses at universities (Carson and Basiliko 2016), it has seen 
growing popularity among recently trained ecologists. Where 
users of GUIs may know how to execute simple analysis or 
create a visually appealing figure, GUIs are generally limited 
in scope compared to opportunities provided by integrated en-
vironments for programming languages (Baker 2017).

R can be used to quickly visualize data, which is highly 
recommended before any statistical analyses are performed 
(Hilborn and Mangel 1997). In addition, R allows the user 
to analyze data and create publication- quality figures in one 
environment, thus there is no moving of data and analyses 
among software packages that can introduce mistakes. Finally, 
the figures created with R are easily reproducible because the 
instructions are saved in a script, which allows collaborators 
and peer reviewers to track the exact steps and data used in 
figure creation.

Using R for publication- quality figures appears to be in-
creasing in popularity among fisheries professionals, particu-
larly with early- career scientists. We conducted a simple poll 
of 80 recent fisheries graduate students at Montana State 
University, University of Alaska Fairbanks, and Utah State 
University, asking them “What type of graphing tool do you 
most frequently use for publication- quality figures?” including 
a list with R, Excel, SigmaPlot, SAS, and write- in response. 
The survey participants reported using R to create publication- 
quality figures for 80% of recent manuscript submissions.

Using scripts to perform analyses and create figures in R 
has a relatively steep learning curve compared to analogous 
methods using GUIs, but investing time in coding can improve 
work efficiency and quality in the long term (Baker 2017). 
RStudio is an integrated development environment for R that 
helps edit scripts by displaying icons marking lines of script 
where mistakes occur. In addition, RStudio provides panes 
that make viewing figures, file management, and project devel-
opment easier. One of the shortcomings of R, and the focus 
of this paper, is that default plots generated by the program do 
not adhere to AFS standards required for publications. Most 
figures need editing, regardless of the software used to create 
them; thus, a good rule- of- thumb is to never assume the de-
faults provide the necessary components to meet the journal 

mailto:
mailto:hcg0509@gmail.com


540  Fisheries | Vol. 44 • No. 11 • November 2019

style guides (Table 1) or meet the guidelines for outstanding 
figures (Rougier et al. 2014; Table 2).

Here we provide templates for creating figures in R that 
adhere to the AFS guidelines, which should help address the 
problems outlined above. Nearly every aspect of figure ap-
pearance can be controlled in R by using syntax, functions, or 
packages. Two main figure creation methods in R include base 
R graphics (hereafter referred to as base R) and ggplot2 (gg-
plot2 is part of the tidyverse package; Wickham 2017). Both 
have unique syntax and defaults, which may deviate from 
AFS standards. Here we will focus on base R and ggplot2 in 
relation to creating publication- quality figures adhering to 
AFS standards using R version 3.5.1 (2018), RStudio version 
1.1.456, and package ‘tidyverse’ (version 1.2.1, 2017; ggplot2 
version 3.1.0). A publication- quality figure can be made using 
either base R or ggplot2; often, the method used is simply a 
matter of personal preference.

Learning R can be challenging, and once learned, can be 
easily forgotten. There are many ways to get help and one 
of  the most useful features of  R is the question mark (?). 
Using ? will bring the user immediately to the help page for 
any given function. For example, if  you are confused about 

the specifics of  making a .tiff  file, type ?tiff() (in the console) 
and press enter. A searchable help page providing guidance 
will appear on the screen. Secondly, there are many sourc-
es of  help online (e.g., Stack Overflow, Cookbook for R, 
R- bloggers), and typing R questions directly into Google 
(e.g., “how to make a stacked barplot in R”) usually yields 
good results. Lastly, one of  the benefits of  coding (rather 
than “clicking”) to make your figures is that each step in 
the process is saved, reproducible, and transferable. Even if  
a particular function or complex string of  dedicated syntax 
are forgotten between uses, if  you have learned it once (and 
saved your work) then it can be retrieved and copied to use 
in another plot.

Our goal is to provide general guidelines and annotated 
code for making publication- quality figures that adhere to the 
AFS style guidelines and best practices for figure creation as 
outlined by Moon (2012) and Rougier et al. (2014; Table 2) 
while maintaining creative freedom for authors. Although we 
provide a demonstration using a scatterplot, the script we pro-
vide will also be a useful starting point for constructing other 
types of plots (e.g., barplots, boxplots, lineplots) commonly 
used to communicate fisheries data. We also believe this will 
be useful for subject and technical editors as a document that 
they can reference to authors for finding helpful information 
for creating figures in R.

PLOTTING IN BASE R
The code below (Box 1; also available: https ://github.com/

CGuyM SU/AFS-figures) will generate length and weight data 
for Largemouth Bass Micropterus salmoides and Channel 
Catfish Ictalurus punctatus using coefficients from standard–
weight equations found in Neumann et al. (2012). Then, the 
code creates a default plot (Figure  1, panel A) and a user- 
customized plot (Figure 1, panel B). We discuss some of the 
important functions used to adjust default values that enhance 
readability and meet AFS guidelines below. In the following 
text, R functions are bolded (e.g., plot()) and arguments used 
within functions are bolded and italicized (e.g., bty = “n”). 
Although this code creates a scatterplot, the commands to 
adjust style (e.g., all commands within par()) and axes are 
compatible with other base R plotting functions like barplot(), 
hist(), and boxplot().

Aspect ratio and figure quality – One of the most frustrat-
ing issues is the creation of figures with poor resolution—pix-
ilated as if  it were a long- lost photograph of bigfoot. This can 
be avoided by using any one of the following commands to 
export a high- quality image from R— tiff(), png(), jpeg(), or 
bmp(). These functions allow one to control aspect ratio (height 
=, width =), resolution (res =), and file format explicitly. Here 
we use tiff() at line 15, which routes what would normally ap-
pear in the plotting window to a generated file in the working 
directory (line 2). We recommend setting resolution to 300 dpi 
at a minimum (res = 300). The figure is saved by running the 
dev.off() function (line 45). Usually, some trial and error is in-
volved in creating a final figure and once completed, the code 
can be nested within tiff() and dev.off() to save. The figures can 
be exported with the aspect ratio of 2:3 or 3:4 by changing val-
ues associated with width = and height = (line 15) and printed 
to ensure readability prior to journal submission. As noted in 
the AFS guidelines, other aspect ratios may be needed to best 
represent the data. Figure exporting functions are also useful 
when making figures for presentations  projected onto large 
screens where poor image quality is magnified.

Table 1. Abbreviated guidelines for figures published in American 
Fisheries Society (AFS) journals. The complete guidelines are available 
at: https ://fishe ries.org/books-journ als/writi ng-tools/ style-guide/ .

AFS Guideline

Ratio: As a rule, figures should be rectangular with a height : width 
ratio of 2 : 3 or 3 : 4 (unless such a ratio distorts the data).

Borders: Do not use borders around figures. In figures portraying the 
(x, y) plane, show only those two axes unless data are also arrayed 
along a y- axis on the right.

Tick marks: Place tick marks on the outside of the axes (i.e., to the left 
of the y- axis and below the x- axis).

Font: Use the font Times Roman for all axis labels; the font size 
should be 6−9 points after reduction and not bold or italic. Other 
fonts may be used for other items as long as (1) the same font is 
used for analogous items and (2) the font size is no larger than that 
used for the axis labels (but at least 6 points).

Font emphasis: A bold sans serif font (e.g., Arial) may be used for the 
letters that distinguish different panels (A, B, etc.). Otherwise avoid 
bold type, as it tends to fill in when reduced. Also avoid italic type, as 
it tends to wash out.

Capitalization: Capitalize the first word in all labels as well as any 
proper nouns and adjectives; do not capitalize other words.

Table 2. Suggested practices for figure design.

Moon (2012) Rougier et al. (2014)

Orient reader with a clear legend Captions are not optional

Organize each graph sensibly Identify your message

Show data clearly and efficiently Know your audience

Scale the data frame to best show 
patterns in the data

Adapt the figure to the support 
medium

Help readers see the patterns in 
the data

Avoid “Chartjunk”

Make the data the most prominent 
part of the graph

Use color effectively

Do not mislead the reader

Do not trust the defaults

Message trumps beauty

Get the right tool

https://github.com/CGuyMSU/AFS-figures
https://github.com/CGuyMSU/AFS-figures
https://fisheries.org/books-journals/writing-tools/style-guide/


Fisheries | www.fisheries.org  541

Remove the box – Figure 1 panel A displays a secondary 
y- axis without tick marks, which violates AFS standards. 
This “box” is a default but can be adjusted using the graph-
ical parameter bty = “n” or bty = “l” within the plot() func-
tion. A more flexible alternative is to suppress drawing all 
default axes with axes = FALSE (line 29), and then build the 
axes separately with the axis() function (lines 33 and 35). 
While building custom axes does add an extra step, it may 
help the user explicitly consider both the message a figure 
conveys and its appearance (i.e., scale, tick- mark parame-
ters, etc.).

Customizing axes – American Fisheries Society journals 
require tick marks be placed on the outside of axes (Table 1), 
and fortunately R will do this by default. Carefully consider 
the scale required to convey your message and use an appro-
priate number of tick marks to minimize difficulty of inter-
pretation by the reader. Figures display trends, thus, if  exact 
values are critical to understanding, consider using a table 
instead (Moon 2012). If  the minimum value in the dataset is 
near zero, start the axis at zero. This will avoid potential mis-
interpretation of the figure, especially if  the other axis does 
start at zero. Axes that end on a tick mark complete the fig-
ure and make it easier for the reader to determine the range 
of the data (Figure 1, panel B). Furthermore, the “hanging” 
line (e.g., Figure 1 A, x- axis) can suggest something is missing. 
These design tips can be accomplished with the at = command 
within the axis() function (lines 33 and 35). With these sugges-
tions, it is possible that the user- built axes can crop data from 
the figure. We suggest viewing the default margin values before 

manipulating axes yourself  to avoid unintentional cropping 
out data.

Use space wisely – The graphic displayed in panel A of 
Figure 1 has excessively wide outer margins. The par() func-
tion is worth understanding if  using base R for plotting; par() 
provides flexibility to alter individual components of the fig-
ure appearance. This was remedied in Figure  1 panel B by 
adjusting the margins with the par(mar =) function (line 27). 
Default R plots also place the axis labels quite far away from 
the axis tick marks, which can be adjusted with par(mgp =) 
(line 27).

Annotate figures – Using mtext() provides excellent flexibil-
ity to add axis labels and panel lettering (e.g., A, B, C) exactly 
where they are needed. We used this to add panel labels (“A” and 
“B” in lines 24 and 41), as well as axis labels (line 37 and 39).

Use Times New Roman – Changing the font used in an R 
plotting device can be adjusted with the family = command 
in the par() function, or directly within other functions like 
mtext() or plot(). Depending on the plotting device used and 
the operating system, different options for this will be avail-
able. Generally, typing family = “Times”, family = “Times 
New Roman”, or family = “serif ” will change the font. As rec-
ommended by AFS, use bold and italics sparingly.

Adding a legend – Adding a legend is easy, and often leads 
to more rapid figure interpretation than limiting details to the 
figure caption. The function legend() will add a legend to the 
plot, and the location of the legend can be set with the first two 
arguments (we used x = 125 and y = 2,200 in line 43) where the 
positional coordinates use the units of the data.

BOX 1. BASE R

 1 #set working directory, you select this on your computer
 2 setwd(“your/directory/here”)
 3 
 4 #generate length and weight data for Channel Catfish and Largemouth Bass
 5 length <- seq(from = 200, to = 500, by = 10)
 6 #a and b values from Fisheries Techniques Ws equations
 7 a_lmb <- (-5.528)
 8 b_lmb <- 3.273
 9 a_cat <- (-5.800)
10 b_cat <- (3.294)
11 weight_lmb <- 10^(a_lmb + b_lmb * log10(length))
12 weight_cat <- 10^(a_cat + b_cat * log10(length))
13 
14 #begin .tiff file of the following two panel figure, finished and saved at line 45
15 tiff(“baseR_figure.tiff”, width = 20.32, height = 7.62, units = “cm”, res = 300)
16 #one row, two panels
17 par(mfrow = c(1,2))
18 
19 #make default plot
20 plot(length, weight_lmb)
21 #add points to default plot
22 points(length, weight_cat)
23 #add panel label A to default plot
24 mtext(“A”, at = min(length), adj = 0, line = 2, cex = 1.5)
25 
26 #make custom figure that meets AFS style guidelines, first set plotting parameters (e.g., a serif font)
27 par(family = “Times New Roman”, mar = c(3,4,2,2), mgp = c(3,.6,0))
28 #make custom plot
29 plot(length, weight_lmb, axes = FALSE, xlab = NA, ylab = NA, ylim = c(0,2400), xlim = c(100,600), pch = 19)
30 #add points for catfish
31 points(length, weight_cat, pch = 21, bg = “white”)
32 #build x-axis
33 axis(1, pos = 0, at = seq(100,600, by = 100), lwd = 1.5)
34 #build y-axis
35 axis(2, pos = 100, at = seq(0,2400, by = 400), las = 1, lwd = 1.5)
36 #add x-axis label

(continues)



542  Fisheries | Vol. 44 • No. 11 • November 2019

PLOTTING IN GGPLOT2
The code below (Box 2; also available here: https ://github.com/

CGuyM SU/AFS-figures) will generate a figure using ggplot2 with 
the same data as shown in Box 1. We will not repeat the step- by- 
step style process as in Box 1 because they are the same for any 
plot submitted to AFS for publication. Here we use the guidelines 
in Box 1 and show code used to create a default ggplot2 figure 
(Figure  2, panel A) and a custom ggplot2 figure (Figure  2, panel 
B). We illustrate some important functions used to adjust a default 
ggplot2 figure to enhance readability and meet AFS guidelines. 
There are many outstanding references on using ggplot2 (e.g., 
Burchell and Vargas 2017; Wickham and Grolemund 2017; http://
seria lment or.com/datav iz/index.html; https ://www.datac amp.com/
home; https ://www.rstud io.com/resou rces/cheat sheet s/), and we 
suggest reading Wickham and Grolemund (2017) to better under-
stand the syntax grammar of graphics using ggplot2.

Default ggplot – The code on lines 22–23 will generate a 
default figure using ggplot2. The default ggplot2 has a grey 
background, white gridlines, and black tick marks. This col-
oration does not adhere to AFS guidelines, the x- axis and y- 
axis often do not end on values—leaving hanging axes, which 
can make it difficult to interpret data in the figure. The de-
fault figures in ggplot2 do not adhere to the AFS style guide-
lines (Table  1) nor those recommended by Moon (2012) and 
Rougier et  al. (2014) (Table  2).

Adjusted ggplot that meets AFS style guidelines – Although 
the amount of  code required to adjust a ggplot2 figure that 
meets the AFS style guide may seem substantial, once a tem-
plate has been created (especially lines 51- 76) the code can be 
reused for a variety of  plots. This recycling of  code can be 
accomplished by simply changing the data (line 28), the geom 
function (line 30), and the scale limits (lines 32 and 34). The 
expand = c(0,0) on lines 32 and 34 ensures that there will be 
no hanging axes. The theme_classic() function is useful for 
removing the grey background with white grid marks (line 
47). Once the grey background has been removed, syntax 
within the theme() function can be used to modify individual 
figure components such as axis titles, font type, legend, tick 
mark, tick mark titles, and axis type. The theme() (lines 51–
76), which allows the user to control all the individual com-
ponents of  the figure, is similar to the par() function in base 
R. Keep in mind that the aforementioned descriptions apply 
to basic ggplot2 usage and that the flexibility of  R graphics 
will allow for nearly unlimited options for alteration of  figure 
appearance.

As mentioned for Box 1, the possibility exists to save a 
high- resolution figure for AFS. Using ggsave and specifying 
the file type (e.g., .tiff) and the dots per inch (dpi) will ensure 
that AFS is using a high- resolution image and it will not be 
pixelated in the printed or online version (line 85).

BOX 2. GGPLOT2

 1 #load ggplot2 and other useful packages
 2 library(tidyverse)
 3 #load package for combining figures
 4 library(gridExtra)
 5 
 6 #set working directory, you select this on your computer
 7 setwd(“your/directory/here”)
 8 
 9 #generate length and weight data for Channel Catfish and Largemouth Bass, and put in dataframe

(continues)

Figure  1. Figures made with base R including one with (A) default values and (B) a user- customized figure that adheres to 
 American Fisheries Society guidelines for authors.

37 mtext(“Length (mm)”, side = 1, line = 1.5)
38 #add y-axis label
39 mtext(“Weight (g)”, side = 2, line = 2)
40 #add panel label B to custom plot
41 mtext(expression(bold(“B”)), at = 100, adj = 0, line = 0, cex = 1.5, family = “Arial”)
42 #add legend
43 legend(125, 2200, c(“Largemouth Bass”, “Channel Catfish”), pch = c(19,1), bty = “n”)
44 #finish plot and save to disk
45 dev.off()

BOX 1 (CONTINUED)

https://github.com/CGuyMSU/AFS-figures
https://github.com/CGuyMSU/AFS-figures
http://serialmentor.com/dataviz/index.html
http://serialmentor.com/dataviz/index.html
https://www.datacamp.com/home
https://www.datacamp.com/home
https://www.rstudio.com/resources/cheatsheets/


Fisheries | www.fisheries.org  543

10 length <- seq(from = 200, to = 500, by = 10)
11 species <- c(rep(“lmb”, 31), rep(“cat”, 31))
12 12 a_lmb <- (-5.528)
13 b_lmb <- 3.273
14 a_cat <- (-5.800)
15 b_cat <- (3.294)
16 weight_lmb <- 10^(a_lmb + b_lmb * log10(length))
17 weight_cat <- 10^(a_cat + b_cat * log10(length))
18 weight <- c(weight_lmb, weight_cat)
19 length_weight_data <- data.frame(species, length, weight)
20 
21 #make default ggplot figure with a legend and annotated label
22 len_wt_default <- ggplot(data = length_weight_data, aes(x = length, y = weight, fill = species)) + geom_point() +
23 labs(title = “A”)
24 #view the plot, will appear in R plotting window
25 len_wt_default
26 
27 #make ggplot figure that meets AFS style guidelines
28 len_wt_afs <- ggplot(data = length_weight_data, aes(x = length, y = weight, fill = species)) +
29 #set symbol shape and size
30 geom_point(shape = 21, size = 2) +
31 #set the limits and tick breaks for the y-axis
32 scale_y_continuous (limits = c(0,2400), expand = c(0,0), breaks = seq(0,2400,400)) +
33 #set the limits and tick spacing for the x-axis
34 scale_x_continuous(limits = c(100,600), expand = c(0,0), breaks = seq(100,600,100)) +
35 #adjust the order of the legend, make new labels, and select the symbol colors
36 scale_fill_manual(limits = c(“lmb”, “cat”), labels = c(“Largemouth Bass”, “Channel Catfish”),
37  values = c(“black”, “white”)) +
38 #add B to figure
39 ggtitle (“B”) +
40 #label the y-axis
41 ylab(“Weight (g)”) +
42 #label the x-axis
43 xlab(“Length (mm)”) +
44 #add legend title, but left blank here because we want a legend but no title
45 labs(fill = “”) +
46 #makes the figure background white without grid lines
47 theme_classic() +
48 
49 #below are theme settings that provide unlimited control of your figure and can be a template for other figures
50 #set the size, spacing, and color for the y-axis and x-axis titles
51 theme (axis.title.y = element_text(size = 14, margin = margin(t = 0, r = 10, b = 0, l = 0), colour = “black”),
52 axis.title.x = element_text(size = 14, margin = margin(t = 10, r = 0, b = 0, l = 0), colour = “black”),
53 #set the font type
54 text = element_text(family = “Times New Roman”),
55 #modify plot title, the B in this case
56 plot.title = element_text(face = “bold”, family = “Arial”),
57 #position the legend on the figure
58 legend.position = c(0.3,0.85),
59 #adjust size of text for legend
60 legend.text = element_text(size = 12),
61 #margin for the plot
62 plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), “cm”),
63 #set size of the tick marks for y-axis
64 axis.ticks.y = element_line(size = 0.5),
65 #set size of the tick marks for x-axis
66 axis.ticks.x = element_line(size = 0.5),
67 #adjust length of the tick marks
68 axis.ticks.length = unit(0.2,“cm”),
69 #set size and location of the tick labels for the y axis
70 axis.text.y = element_text(colour = “black”, size = 14, angle = 0, vjust = 0.5, hjust = 1,
71 margin = margin(t = 0, r = 5, b = 0, l = 0)),
72 #set size and location of the tick labels for the x axis
73 axis.text.x = element_text(colour = “black”, size = 14, angle = 0, vjust = 0, hjust = 0.5,
74 margin = margin(t = 5, r = 0, b = 0, l = 0)),
75 #set the axis size, color, and end shape
76 axis.line = element_line(colour = “black”, size = 0.5, lineend = “square”))
77 
78 #view the plot, will appear in R plotting window
79 len_wt_afs
80 
81 #arragne the two plots side by side using the gridExtra package
82 ggplot_figure <- grid.arrange(len_wt_default, len_wt_afs, ncol = 2)
83 
84 #save the plot as a .tiff as a very large file, which is publication quality
85 ggsave(ggplot_figure, file = “ggplot_figure.tiff”, width = 20.32, height = 7.62, units = “cm”, dpi = 300)

BOX 2 (CONTINUED)



544  Fisheries | Vol. 44 • No. 11 • November 2019

ACKNOWLEDGMENTS
The Montana Cooperative Fishery Research Unit is jointly 

sponsored by the U.S. Geological Survey (USGS); Montana 
Fish, Wildlife & Parks; and Montana State University. Any 
use of trade, product, or firm names is for descriptive purposes 
only and does not imply endorsement by the U.S. Government. 
Although this code has been processed successfully on a com-
puter system at the USGS, no warranty expressed or implied 
is made regarding the display or utility of the code for other 
purposes, nor on all computer systems, nor shall the act of dis-
tribution constitute any such warranty. The USGS or the U.S. 
Government shall not be held liable for improper or incorrect 
use of the code described and/or contained herein.

REFERENCES
Baker, M. 2017. Scientific computing: code alert. Nature 541:563–565. 

Nature Research.
Burchell, J., and M. Vargas. 2017. The hitchhikers guide to ggplot2. 

Leanpub, Victoria, British Columbia, Canada.
Carson, M. A., and  N. Basiliko. 2016. Approaches to R education in 

Canadian universities. F1000Research 5:2802. Faculty of 1000 Ltd.
Hilborn, R., and M. Mangel. 1997. The ecological detective: confronting 

models with data. Princeton University Press, Princeton, New Jersey.

Hubbard, K. E., and S. D. Dunbar. 2017. Perceptions of scientific research 
literature and strategies for reading papers depend on academic ca-
reer stage. PLoS ONE 12:e0189753.

Jinha, A. 2010. Article 50 million: An estimate of the number of scholarly 
articles in existence. Learned Publishing 23:258–263.

Moon, R. D. 2012. Design of tables and figures for display of scientific 
data. Pages 89–109 in D. Mason, C. A. Jennings, T. E. Lauer and B. 
Vondracek, editors. Scientific communication for natural resource 
professionals, 1st edition. American Fisheries Society, Bethesda, 
Maryland.

Neumann, R. M., C. S. Guy, and D. W. Willis. 2012. Length, weight, and 
associated indices. Pages 637–676 in A. V. Zale, D. L. Parrish and T. M. 
Sutton, editors. Fisheries techniques, 3rd edition. American Fisheries 
Society, Bethesda, Maryland.

R Core Team. 2018. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. 
Available: https ://www.R-proje ct.org/.

Rougier, N. P., M. Droettboom, and P. E. Bourne. 2014. Ten simple rules 
for better figures. PLoS Computational Biology 10:e1003833.

Tufte, E. R. 2001. The visual display of quantitative information. Graphics 
Press, Cheshire, Connecticut.

Wickham, H. 2017. tidyverse: Easily install and load the ‘Tidyverse’. R 
package version 1.2.1. Available: https ://CRAN.R-proje ct.org/packa 
ge=tidyv erse

Wickham, H., and G. Grolemund. 2017. R for data science. O’Reilly Media 
Inc., Sebastopol, California.

Figure  2. Figures made with ggplot2 including one with (A) default values and (B) a custom figure that adheres to American 
Fisheries Society guidelines for authors.

https://www.R-project.org/
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse

