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ABSTRACT
Invasive species introduction and expansion is the second great-
est threat to global biodiversity decline after habitat degradation.
Introduced in the 1930s, the benthivorous Longnose Sucker
(Catostomus catostomus) became established in Yellowstone Lake,
Wyoming, USA, and used tributary streams for spawning. With
this introduction, concerns were raised regarding their possible
competition for food resources with native adfluvial Yellowstone
Cutthroat Trout (Oncorhynchus clarkii bouvieri). Additionally, insuf-
ficient literature exists on Longnose Sucker feeding habits
throughout their range, and there has been no comprehensive
study of Longnose Sucker diet in Yellowstone Lake. The need
exists for understanding the community ecology and food web
dynamics in Yellowstone Lake, especially as non-native Lake Trout
(Salvelinus namaycush) have caused declines in Yellowstone
Cutthroat Trout through predation. The objectives of this study
were to examine possible size-specific shifts in feeding habits,
evaluate feeding strategy, and compare historical and contemporary
diet data of Longnose Suckers in Yellowstone Lake. Diet data col-
lected during summer of 2018 were analyzed by length-class to test
for size-specific diet shifts. As Longnose Sucker length increased,
copepods (Diacyclops bicuspidatus thomasi, Leptodiaptomus ashlandi
or Hesperodiaptomus shoshone) decreased in proportion by weight. In
contrast, dipterans (Chironomidae) and amphipods (Hyalella spp. or
Gammarus spp.) varied in proportion by weight in the diet across
length classes. We assessed the feeding strategy by evaluating the
relationship between prey-specific abundance and percent frequency
of occurrence. This assessment indicates that Longnose Suckers have
a heterogeneous diet and generalized feeding strategy as all prey
items had a prey-specific abundance value of <50%. Diet compos-
ition differed significantly between historical and contemporary
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samples, likely related to the differences in sampling locations and
possibly due to a Lake Trout-induced trophic cascade. This study
established the diet composition and feeding habits of Longnose
Suckers residing in Yellowstone Lake, thus, expanding our knowledge
of Longnose Sucker feeding patterns and ecology.

Introduction

Invasive species introduction and expansion is the second greatest threat to global bio-
diversity decline after habitat degradation (Wilcove et al. 1998; WWF 2016). Additionally,
introductions are recognized as a major threat to aquatic ecosystems (Ricciardi and
Rasmussen 1999; Pimentel et al. 2005). For example, the non-native Lake Trout
(Salvelinus namaycush) in Yellowstone Lake caused the near-collapse of the native
Yellowstone Cutthroat Trout (Oncorhynchus clarkii bouvieri) population and a four-level
trophic cascade (Koel et al. 2019). The effects of the Lake Trout invasion in Yellowstone
Lake and tributary streams are well-documented, and research demonstrates how Lake
Trout indirectly forced declines, displacements, and prey shifting by bald eagles
(Haliaeetus leucocephalus), ospreys (Pandion haliaetus), river otters (Lutra canadensis),
and black and grizzly bears (Ursus americanus and Ursus arctos, respectively) in
Yellowstone National Park (Koel et al. 2019).

Lake Trout, however, are not the only non-native species introduced into Yellowstone
Lake. In the 1930s, the benthivorous Longnose Sucker was introduced and became estab-
lished in Yellowstone Lake and used tributary streams for spawning (Brown and Graham
1954; Koel et al. 2019). The introduction of Longnose Suckers in Yellowstone Lake raised
concerns about their potential effect on Yellowstone Cutthroat Trout. Therefore, research
was conducted to understand Longnose Sucker life history. An investigation on spawning
behavior, age and growth, distribution and diet of the Longnose Sucker collected in tributa-
ries of Yellowstone Lake showed no indication that Longnose Suckers had negative effect
on Yellowstone Cutthroat Trout populations (Brown and Graham 1954; Biesinger 1961).

Both within Yellowstone Lake and throughout their native range, insufficient literature
exists regarding the Longnose Sucker life history. Additionally, as Lake Trout suppression
efforts continue in Yellowstone Lake to promote Yellowstone Cutthroat Trout recovery, it
is essential to understand the community ecology and food-web dynamics in the lake. We
wanted to investigate the diets of the Longnose Sucker sampled from Yellowstone Lake to
expand the knowledge regarding Longnose Suckers in their non-native range. The objec-
tives of this study were to examine possible size-specific shifts in feeding habits, evaluate
feeding patterns and compare historical (Brown and Graham 1954; Biesinger 1961) diet
data and contemporary diet data of Longnose Suckers sampled in Yellowstone Lake.

Methods and materials

Study site

Yellowstone Lake is located in Yellowstone National Park in northwestern Wyoming,
USA (Figure 1), and is the largest high elevation (above 2000m; 2357m) lake in North
America, with a surface area of 34,020 ha (Kaplinski 1991) and a maximum depth of
133m (Morgan et al. 2003). In addition to Yellowstone Cutthroat Trout, Lake Trout and
Longnose Sucker, the fish assemblage consists of the native Longnose Dace (Rhinichthys
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cataractae) and two non-native fishes, Redside Shiner (Richardsonius balteatus) and Lake
Chub (Couesius plumbeus) (Koel et al. 2006). Yellowstone Cutthroat Trout, Lake Trout
and Longnose Sucker are well-established across the lake; the Leucisid species (also known
as ‘minnows’) inhabit only vegetated bays and other littoral areas (Kaeding and
Koel 2011).

Fish collection

Gill nets were used to sample 30 sites across the lake from 2 August 2018 to 20 September
2018 (i.e. evenly distributed, stratified sampling resulting in six sites in each of the four regions
of the lake; Figure 1). At each site, a small-mesh sinking gill net and a large-mesh sinking gill
net were set overnight, parallel to each other and perpendicular to the shore, at three depth
strata determined by the depth of the thermocline: epilimnion (3–10m); metalimnion
(10–30m) and hypolimnion (>40m) (Supporting Information Figure S1) (Syslo et al. 2016).
This sampling design was implemented to sample across the existing range of fish sizes in the
lake, at each site. Small-mesh gill nets were 2.4-m deep by 90-m long and consisted of six 15-
m panels (19-, 25-, 32-, 38-, 44- and 51-mm bar measure mesh). Large-mesh gill nets were
2.4-m deep by 75-m long and consisted of five 13.7-m panels (57-, 64-, 70-, 76- and 89-mm
bar measure mesh). The total length of fish was measured to the nearest millimeter. Fishes
captured other than Longnose Suckers included Yellowstone Cutthroat Trout and Lake
Trout. Of the trout species collected as incidental mortalities, diet analyses were also con-
ducted to inform other Yellowstone Lake studies.

Diet extraction and identification

Of the collected fish, the alimentary canal was extracted and preserved in 70% ethanol. If
the canal was greater than 150-mm, only the first 150-mm portion was extracted. We

Figure 1. Map of Yellowstone Lake, Wyoming with 2018 gillnet locations. Open circles or black squares represent
locations of 2018 sampling sites, while black squares are the gillnets from which Longnose Suckers were sampled and
had diets analyzed for inclusion in this study.
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selected the beginning of the canal because we hypothesized that food items would be less
digested at the beginning of the canal than at the end of the canal. Diet contents were
poured into a container with ten equally sized units. To subsample the diets, a random
number generator was used to select a number between 1 and 10, twice, to randomly
select two grid units. We used preliminary diet extractions with and without subsampling
to confirm that a 20% subsample was indeed representative of the whole diet collected
from the fish. Prey items were identified to the lowest taxonomic level possible, typically
to genus and blotted wet-weights were recorded to the nearest 0.0001 g. Detritus was
weighed in the same manner as invertebrates or phytoplankton using blotted wet-weight.
Unidentified materials found in diets were weighed but not included in proportional or
statistical analyses.

Diet analysis

Size-specific diet shift
To account for size-specific diet shifts, we sampled at least ten individuals from each
length-class (total length in millimeters): 100–199, 200–299, 300–399, 400–499 and
500–599. We analyzed the mean percent composition by weight of each prey item by
length-class. Mean composition by weight is useful for assessing the importance of prey
type to the diet of a predator and is calculated by dividing the weight of each prey cat-
egory consumed by the total weight of all items in the diet (Chipps and Garvey 2007).
Mean composition by weight is calculated as:

MWi ¼ 1
P

XP
j¼1

WijPQ
i¼1
Wij

0
@

1
A,

where MWi is the mean composition by weight, P is the number of fish with food in their
stomachs, Wij is the weight of prey i in the stomach contents of individual fish j, and Q
is the number of food types (Chipps and Garvey 2007). Beta regression (betareg package)
(Cribari-Neto and Zeileis 2010) was used to test for differences in mean composition by
weight among length-classes.

Feeding patterns
We assessed feeding patterns using the graphical technique proposed by Costello (1990)
and modified by Amundsen et al. (1996), which evaluates the relationship between prey-
specific abundance and percentage frequency of occurrence. Amundsen et al. (1996)
defined prey-specific abundance as the proportion that prey i comprises of all prey items
in only the predators that contain prey i (Amundsen et al. 1996). Prey-specific abundance
is calculated as:

Pi ¼
P

SiP
Sti

� 100,

where Pi is the prey-specific abundance of prey i, Si the stomach content weight com-
prised of prey i and Sti the total stomach content weight in only those predators with
prey i in their stomach (Amundsen et al. 1996). We used this graphical technique to ana-
lyze prey importance and feeding strategy. Summarized interpretation of the quadrant
labels for the Costello (1990) technique are below (adapted from Amundsen et al. 1996),
or can be further explained by referencing Amundsen et al. (1996):
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� Prey importance and predator feeding strategy are obtained by viewing distributions of
points along the diagonals and axes of the diagram.

� Predator feeding strategy in terms of specialization or generalization is represented on
the vertical axis (more specialized predator is in the upper part of the graph).

� Prey in the upper left corner of the graph will have been consumed by a few individu-
als displaying specialization.

� Prey in the lower right corner of the graph will have been eaten occasionally by most
individuals.

Historical comparison

Longnose Sucker diet data from this study were compared to Biesinger (1961) and Brown
and Graham (1954) using the percentage frequency of prey occurrence. Biesinger (1961)
and Brown and Graham (1954) used percentage frequency of occurrence to describe diet
data calculated as:

Oi ¼ Ji
P
� 100%

where Oi is the percentage frequency of occurrence of prey i, Ji is the number of fish
containing prey i and P is the number of fish with food in their stomach (Chipps and
Garvey 2007). Pearson’s chi-squared test (a¼ 0.05) was used to compare the number of
stomachs containing each diet item amongst Biesinger (1961), Brown and Graham
(1954) and this study. All statistical analyses were conducted in R, version 3.5.3 (R Core
Team 2019).

Results

We sampled 56 Longnose Sucker for diet examination, varying in length from 160 to
589mm (12 fish in 100–200mm; 12 fish in 201–300mm; 10 fish in 301–400mm; 11 fish
in 401–500mm; 11 fish in 501–600mm), all fish contained food in their digestive
tracts. The most prevalent prey categories were detritus, copepods (Diacyclops bicuspidatus
thomasi, Leptodiaptomus ashlandi or Hesperodiaptomus shoshone) and dipterans
(Chironomidae). Amphipods (Hyalella spp. or Gammarus spp.), cladocerans (Daphnia
schødleri or Daphnia pulicaria), ephemeropterans (Siphlonurus spp., Stenacron spp.,
Ephemerella spp., Serratella spp. or Baetis spp.), mollusks (Spheariidae, Planorbidae or
Physidae) and benthic algae (Anabaena spp.) were also present but accounted for less
of the diet weight. Detritus composed 30.4% of the diet by weight and occurred in 94.7%
of diets in all length-classes (Table 1). Dipterans were the second-highest proportion of
the diet of all length-classes, composing 30.0% of the diet by weight and occurring in
84.2% of diets. Longnose Suckers also relied upon copepods, which comprised 10.4% of
the diet but at a low frequency of occurrence of 8.8%. Amphipods, cladocerans, ephemer-
opterans, mollusks and benthic algae each composed less than 10% of the diet by weight
in all length-classes.

Size-specific diet shift

We wanted to further examine possible differences across Longnose Sucker length classes
for the most prevalent diet items by weight. Mean composition by weight for amphipods,
copepods, detritus and dipterans varied among length-classes (Figure 2), but statistical
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significance was not supported for any diet items from beta regression or post-hoc Tukey
tests. Amphipod proportion by weight was least for the 300mm and 500mm length class
(Figure 2(A)). Overall, copepod proportion by weight decreased from length-class 100mm
to length-class 500mm (Figure 2(B)). Dipterans and detritus proportion by weight was
relatively constant across all length classes (Figure 2(C,D)).

Feeding patterns

The relationship between prey-specific abundance and frequency of occurrence indicate
that Longnose Suckers exhibit a generalized feeding strategy (Figure 3). The most import-
ant diet items were dipterans and detritus, eaten by more than half of the fish, but their
average contribution to the stomach contents of these fish was low (Figure 3). Rare (in
terms of being found in diets) prey items included amphipods, cladocerans, copepods,
ephemeropterans, mollusks, benthic algae and trichopterans (Figure 3).

Figure 2. Proportion by weight across length class (total length; TL) for (A) amphipods, (B) copepods, (C) Diptera and
(D) detritus in Longnose Sucker diets collected in Yellowstone Lake, Wyoming, USA in 2018. Black lines are median
values, boxes are interquartile range (IQR), whiskers are 1.5 � IQR and points are outliers.

Table 1. Frequencies of occurrence and percent composition by weight for diet items eaten by Longnose Suckers
sampled in 2018 (this study), Biesinger (1961) and Brown and Graham (1954).

Frequency of occurrence (%) Composition
by weight (%)

Diet item This study Biesinger (1961) Brown and Graham (1954) This study

Amphipoda 47.4 60.0 NA 8.8
Cladocera 26.3 58.0 NA 4.9
Copepoda 8.8 8.0 NA 10.4
Diptera 84.2 92.0 49.7 30.0
Ephemeroptera 12.3 20.0 44.7 3.2
Mollusca 10.5 0.0 1.0 7.5
Benthic algae 12.3 14.0 63.0 2.7
Trichoptera 19.5 29.0 28.0 1.4
Detritus 94.7 NA 85.0 30.4

NA¼ not applicable.
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Historical comparison

Brown and Graham (1954) sampled 74 fish for diet examination (total length,
83mm–496mm) from June to September of 1951 and 1952, while Biesinger (1961)
sampled 100 fish for diet examination (total length, 170–427mm) from July to August of
1959. Strong evidence exists to support that the number of stomachs containing each diet
item differed between Brown and Graham (1954) and this study (v¼ 101.17, p ¼ <.0001)
and Biesinger (1961) and this study (v¼ 111.29, p ¼ <.0001). Amphipods, copepods and
cladocerans were absent in diets from Brown and Graham (1954) study while they
occurred in 47.4%, 8.8% and 26.3% of diets from this study, respectively (Table 1).
Coleopteran (spp.) occurred in over 30% of Brown and Graham (1954) diets but were
absent in 2018 diets. Benthic algae decreased from 63.0% in the Brown and Graham
(1954) diets to 12.3% in 2018 diets (Table 1). Dipterans increased from 49.7% in the
Brown and Graham (1954) diets to 84.2% in 2018 diets (Table 1). Amphipods and clado-
cerans decreased from 60.0% and 58%, respectively, in Biesinger (1961) to 47.4% and
26.3% in 2018 diets (Table 1).

Discussion

Size-specific shift

Longnose Sucker diet composition differed as length increased, though no statistical dif-
ference was supported. Generally, amphipods, dipterans and copepods decreased by
weight in diets as length increased, while benthic algae weight increased. Size-specific
shifts have also been noted in other sucker species’ diets. Amphipods increased in

Figure 3. Relation between prey-specific abundance and frequency of occurrence of prey taxa for Longnose Suckers
sampled from Yellowstone Lake, Wyoming during the summer of 2018. Summarized interpretation of the quadrant
labels for the Costello (1990) technique are below (adapted from Amundsen et al. 1996) or can be further explained
by referencing Amundsen et al. (1996):

� Prey importance and predator feeding strategy are obtained by viewing distributions of points along the diagonals and axes of
the diagram.

� Predator feeding strategy in terms of specialization or generalization is represented on the vertical axis (more specialized predator
is in the upper part of the graph).

� Prey in the upper left corner of the graph will have been consumed by a few individuals displaying specialization.
� Prey in the lower right corner of thee graph will have been eaten occasionally by most individuals.
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importance with increasing total length for White Sucker (Catostomus commersonii) in
Lake Michigan (Koehler 1979), but we observed a decrease in importance of amphipods
with increasing total length (Figure 2(A)). Amphipods were also an important prey item
for Longnose Suckers living in Great Slave Lake, Northwest Territory, Canada and
Pyramid Lake, Alberta, Canada, constituting over 60% of diet by volume (Rawson and
Elsey 1950; Rawson 1951). The apparent size-specific shift we observed may be due to
competition for food resources.

After initial discovery in 1994 and subsequent invasion of Lake Trout in Yellowstone
Lake, Yellowstone Cutthroat Trout exhibited diet shifts to rely more on benthic amphi-
pods than zooplankton (Syslo et al. 2016). As Longnose Sucker length increases, the fish
tend to be sampled in deeper waters; therefore, longer Longnose Suckers are more likely
to occupy the same strata as Yellowstone Cutthroat Trout, which are more abundant in
Yellowstone Lake (Koel et al. 2019). Consequently, the competition between these two
species may increase as Longnose Sucker length increases. The possibility exists that
Longnose Suckers sharing habitat with Yellowstone Cutthroat Trout or Lake Trout must
find alternatives to amphipods in their diets as a result of interspecific competition
because more than 50% of Yellowstone Cutthroat Trout and Lake Trout diets by weight
are comprised of amphipods (Syslo et al. 2016).

A Longnose Sucker life-history study in a Wyoming reservoir found that dipterans
were not abundant in the diets of smaller fish, and as fish size increased, dipterans
became more important (Harned 1981). These conclusions are contrary to our study as
we found dipterans to decrease in importance with increasing length (Figure 2(C)). The
discrepancy may be explained by our samples not including suckers smaller than 100mm,
while, Harned (1981) sampled Longnose Suckers ranging in length from 45mm
to 300mm.

Similar to previous studies on Longnose Sucker, detritus made up a large proportion
of the diets, and copepods decreased in importance in diets of longer Longnose Suckers
(Rawson and Elsey 1950; Koehler 1979). Previous studies showed that zooplankton were
more important than detritus to smaller Longnose Suckers (Rawson and Elsey 1950;
Koehler 1979). The consumption of detritus by a similar species, the White Sucker, is
intentional when preferred invertebrate prey are scarce (Ahlgren 1990). Detritus has pre-
viously been thought of as indigestible and nutritionally insignificant to fish (Darnell
1967; Odum 1970) and that detritus is indiscriminately ingested with invertebrates
(Forbes and Egerton 1888; Carl 1937; Macphee 1960). However, studies have shown
detritus to be 60–75% digestible and assimilated by detritivores and to be nutritionally
adequate to support their growth (Bowen 1981; Lewis and Peters 1984). Thus, detritus is
considered an important diet item to Longnose Suckers in Yellowstone Lake for all
length-classes.

Feeding pattern

Longnose Suckers in Yellowstone Lake have a heterogeneous diet and generalist feeding
strategy. The most important items in Longnose Sucker diets in Yellowstone Lake were
dipterans and detritus. However, their average contribution to the stomach contents was
low, which is indicative of a generalized feeding strategy. A generalist predator has a
broad dietary niche width, utilizing a wide range of food resources at the population level
(Amundsen et al. 1996). Longnose Suckers in Yellowstone Lake have a relatively high
within-phenotype component, meaning individuals exploit a wide range of overlapping
resources (Giller 1984; Amundsen et al. 1996). Previous studies corroborate our findings
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that Longnose Suckers have generalist feeding strategies, preying on many different prey
taxa (Koehler 1979; Harned 1981).

The generalist feeding strategy of Longnose Suckers may have attributed to their suc-
cess in colonizing Yellowstone Lake. A combination of factors determines the population
trajectory of any species introduction, and while each successful invasion has some unique
properties, generalizations on invasion traits exist to predict the success of a species to
invade (Simberloff 2013; Havel et al. 2015). First, non-native species must disperse to
reach new habitats (Havel et al. 2015), and characteristics lending species to be trans-
ported by humans (intentionally or unintentionally) are important attributes of successful
colonists (Ehrlich 1986). Second, certain characteristics lend species the capability to be
successful invaders by their ability to succeed in a new aquatic habitat (Ehrlich 1986).
Successful colonists tend to be relatively abundant and widely distributed where they are
endemic (Ehrlich 1986); Longnose Suckers are the most widespread sucker in Northern
America (Varley and Schullery 1998). In systems that have been minimally altered by
human activity, such as Yellowstone Lake, invasive fish are more likely to be represented
by top predators and omnivores/detritivores (Moyle and Light 1996). Our findings indi-
cate that Longnose Suckers in Yellowstone Lake are polyphagous omnivores-detritivores
with a generalist feeding strategy. Finally, the success of a non-native species to persist is
partially due to the features of the site to which it has been introduced (Simberloff 2013).
The clear, cold waters of Yellowstone Lake provide the preferred habitat of Longnose
Suckers (Varley and Schullery 1998).

Historical comparison
Diet item frequency of occurrence differed in the Brown and Graham (1954) and 2018
diets, which may be due to a variety of factors. A size-specific shift cannot explain the
variance in diet composition observed between Brown and Graham (1954) and our study
as the total lengths of Longnose Suckers sampled were consistent between the studies.
However, different sampling locations may be attributed to the variation in diet compos-
ition between Brown and Graham (1954) and our study. The Brown and Graham (1954)
study sampled diets from the mouths of two tributary streams, whereas we sampled diets
from the lake proper. The difference in sampling location may explain the lack of cope-
pods and cladocerans in the Brown and Graham (1954) diets. Copepods and cladocerans
are found in lentic water habitats such as ponds and lakes (Ebert 2005; Boxshall and
Defaye 2008); Longnose Suckers sampled from the lake proper likely fed on zooplankton
because copepods and cladocerans are abundant in Yellowstone Lake. Suckers sampled
from the tributary streams did not feed on zooplankton because zooplankton may be less
available in the tributaries. In Yellowstone National Park, approximately 20 coleopteran
species have been identified, but they have not been widely collected in aquatic environ-
ments (Roemhild 1994). Thus, the possibility exists that the coleopterans observed in
Longnose Sucker diets sampled in the Brown and Graham (1954) study were of terrestrial
origin and fell into the tributary streams. Dipterans are found in extremely varied habitats
encompassing lentic and lotic water habitats (Pinder 1995), explaining why this diet item
was present in over 50% of diets from Brown and Graham (1954) and our study.

We hypothesize that changes between Biesinger (1961) (sampled fishes in Yellowstone
Lake proper) and contemporary diets might be due to another non-native fish, the pisciv-
orous Lake Trout. Non-native Lake Trout introduction altered the ecosystem structure
and function in Yellowstone Lake and other water bodies (Tronstad et al. 2010; Ellis et al.
2011). This effect is apparent in Yellowstone Lake, where Lake Trout invasion caused a
four-level trophic cascade resulting in a zooplankton assemblage dominated by small
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copepods to an assemblage with higher abundance and biomass of larger species
(Tronstad et al. 2010). The shift in zooplankton assemblage resulted in a decrease in ben-
thic algae biomass.

If Lake Trout attributed to the variance in diet composition between Biesinger (1961)
and our study, we expect to see that the dominant food items identified in Lake Trout
and Yellowstone Cutthroat Trout diets (i.e. amphipods) (Syslo et al. 2016) would result in
a decrease in the frequency of overlapping diet items in Longnose Sucker. Amphipod fre-
quency of occurrence decreased in diets of Longnose Suckers sampled from the lake in
2018 compared to those in the Biesinger (1961) study. Larger-bodied zooplankton (clado-
cerans) were found more frequently than small copepods in diets of Longnose Suckers
sampled from the lake in 2018 as well. Thus, the Lake Trout-induced trophic cascade that
altered the relative abundances of aquatic invertebrates could have altered invertebrate
availability for consumption by the Longnose Suckers.

Conclusion

No comprehensive study existed researching Longnose Sucker diets sampled from
Yellowstone Lake, thus, this study provides novel information describing Longnose Sucker
diet composition and feeding ecology. Examining the feeding habits of non-native fishes
is critical for determining the ecological effects of species introductions and competition
between introduced species and native species (Syslo et al. 2016). Here, we expanded the
knowledge of Longnose Sucker ecology and added to the limited research existing on
Longnose Suckers. Plans exist to include this research in food-web and Ecopath
(Christensen and Walters 2004) modelling that will be integrated into further research in
Yellowstone Lake.

Acknowledgements

The authors would like to thank all of those who provided assistance in the field or laboratory. Any use
of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the
US Government. This study was performed under the auspices of Montana State University institutional
animal care and use protocol 2018-72.

Disclosure statement

All authors declare no conflict of interest or involvement in any organization or entity with any financial
or non-financial interest in the subject matter or materials discussed in this manuscript.

Funding

Funding for this work was provided by Yellowstone National Park and Montana State University. The
Montana Cooperative Fishery Research Unit is jointly sponsored by the U.S. Geological Survey, Montana
Fish, Wildlife & Parks, Montana State University, and the U.S. Fish and Wildlife Service.

Notes on Contributors

Kaitlyn M. Furey is Former laboratory technician for Yellowstone Lake diet study at Montana
State University.

Hayley C. Glassic is a PhD student researching management and food web structure in Yellowstone Lake.

10 K. M. FUREY ET AL.



Christopher S. Guy is a Montana Cooperative Fishery Research Unit Assistant Unit Leader and Research
Fish Biologist.

Todd M. Koel is a Senior Fisheries Biologist Yellowstone Center for Resources.

Jeffrey L. Arnold is a Former Aquatic Ecologist, Yellowstone Center for Resources. Currently an Aquatic
Ecologist, Glen Canyon National Recreation Area.

Philip D. Doepke is a Fisheries Biologist, Yellowstone Center for Resources.

Patricia E. Bigelow is a Fisheries Biologist, Yellowstone Center for Resources.

ORCID

Hayley C. Glassic http://orcid.org/0000-0001-6839-1026
Christopher S. Guy http://orcid.org/0000-0002-9936-4781
Todd M. Koel http://orcid.org/0000-0001-6919-5828

Data availability statement

The data that support the findings of this study are available with permission from the authors.
Restrictions apply to the availability of these data, which were used under license for this study.

References

Ahlgren MO. 1990. Diet selection and the contribution of detritus to the diet of the juvenile white sucker.
Can J Fish Aquat Sci. 47(1):41–48.

Amundsen PA, Gabler HM, Staldvik FJ. 1996. A new approach to graphical analysis of feeding strategy
from stomach contents data-modification of the Costello (1990) method. J Fish Biol. 48(4):607–614.

Biesinger KE. 1961. Studies on the Relationship of the Redside Shiner (Richardsonius balteatus) and the
Longnose Sucker (Catostomus catostomus) to the Cutthroat Trout (Salmo clarki) Popluation in Yellowstone
Lake [MS thesis]. Logan (UT): Utah State University. https://digitalcommons.usu.edu/etd/331.

Bowen SH. 1981. Digestion and assimilation of periphytic detritial aggregate by Tilapia mossambica.
Trans Am Fish Soc. 110 (2):239–245.

Boxshall GA, Defaye D. 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater.
Hydrobiologia. 595(1):195–207.

Brown CJD, Graham RJ. 1954. Observations on the Longnose Sucker in Yellowstone Lake. Trans Am
Fish Soc. 83(1):38–46.

Carl GC. 1937. Food of the coarse-scaled sucker (Catostomus commersoni Girard). J Biol Board Can. 3(1):
20–25.

Chipps SR, Garvey JE. 2007. Assessment of diets and feeding patterns. In: Guy CS, Brown ML, editors.
Analysis and interpretation of freshwater fisheries data. Bethesda (MD): American Fisheries Society; p.
473–514

Christensen V, Walters CJ. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol
Modell. 172(2–4):109–139.

Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J Stat Soft. 34(2):1–24.
Darnell RM. 1967. The organic detritus problem. In: Lauff GH, editor. Estuaries. Washington (D.C.):

American Association for the Advancement of Science; p. 397–407.
Ebert D. 2005. Ecology, epidemiology, and evolution of parasitism. In: Daphnia [Internet]. Bethesda

(MD): National Center for Biotechnology Information (US). Chapter 2, Introduction to Daphnia
Biology. https://www.ncbi.nlm.nih.gov/books/NBK2042/.

Ehrlich PR. 1986. Which Animal Will Invade? In: Mooney HA, Drake JA, editors. Ecology of biological
invasions of North America and Hawaii. New York (NY): Springer; p. 79–95.

JOURNAL OF FRESHWATER ECOLOGY 11

https://digitalcommons.usu.edu/etd/331
https://www.ncbi.nlm.nih.gov/books/NBK2042/


Ellis BK, Stanford JA, Goodman D, Stafford CP, Gustafson DL, Beauchamp DA, Chess DW, Craft JA,
Deleray MA, Hansen BS, et al. 2011. Long-term effects of a trophic cascade in a large lake ecosystem.
Proc Natl Acad Sci USA. 108(3):1070–1075.

Forbes SA, Egerton FN. 1888. On the food relations of fresh-water fishes. In: History of ecology. New
York (NY): Arno Press; p. 437.

Giller PS. 1984. Community structure and the niche. Dordrecht: Springer.
Harned WB. 1981. The early life histories of Longnose and White Suckers in Upper Sunshine Reservoir

in Wyoming [MS thesis]. Laramie (WY): University of Wyoming.
Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. 2015. Aquatic invasive species: challenges

for the future. Hydrobiologia. 750(1):147–170.
Kaeding LR, Koel TM. 2011. Age, growth, maturity, and fecundity of Yellowstone Lake Cutthroat Trout.

Northwest Sci. 85(3):431–444.
Kaplinski MA. 1991. Geomorphology and geology of Yellowstone Lake, Yellowstone National Park,

Wyoming. Flagstaff (AZ): Northern Arizona University.
Koehler FE. 1979. Life history studies of the Longnose Sucker, Catostomus catostomus, and the White

Sucker, Catostomus commersoni, in Nearshore Eastern Lake Michigan Near Ludington, Michigan [MS
thesis]. East Lansing (MI): Michigan State University.

Koel TM, Mahony DL, Kinnan KL, Rasmussen C, Hudson CJ, Murcia S, Kerans BL. 2006. Myxobolus cer-
ebralis in Native Cutthroat Trout of the Yellowstone Lake Ecosystem. J Aquat Anim Health. 18(3):
157–175.

Koel TM, Tronstad LM, Arnold JL, Gunther KA, Smith DW, Syslo JM, White PJ. 2019. Predatory fish
invasion induces within and across ecosystem effects in Yellowstone National Park. Sci Adv. 5(3):
eaav1139.

Lewis VP, Peters DS. 1984. Menhaden – A single step from vascular plant to fishery harvest. J Exp Mar
Biol Ecol. 84(1):95–100.

Macphee C. 1960. Postlarval development and diet of the largescale sucker, Catostomus macrocheilus, in
Idaho. Copeia. 1960(2):119–125.

Morgan LA, Shanks IC, Lovalvo DA, Johnson SY, Stephenson WJ, Pierce KL, Harlan SS, Finn CA, Lee G,
Webring M, et al. 2003. Exploration and discovery in Yellowstone Lake: results from high-resolution
sonar imaging, seismic reflection profiling, and submersible studies. J Volcanol Geotherm Res.
122(3–4):221–242.

Moyle PB, Light T. 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biol
Conserv. 78(1–2):149–161.

Odum WE. 1970. Utilization of the direct grazing and plant detritus food chains by the stiped mullet
Mugil cephalus. In: Steele JH, editor. Marine food chains. Berkeley (CA): University of California
Press; p. 397–407.

Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated
with alien-invasive species in the United States. Ecol Econ. 52(3):273–288.

Pinder LCV. 1995. The habits of chironomidae larvae. In: Armitage PD, Cranston PS, Pinder LCV, edi-
tors. The Chironomidae: biology and ecology of non-biting midges. Dordrecht: Springer; p. 107–135

R Core Team. 2019. R: a language and environment for statistical computing. Vienna: R Foundation for
Statistical Computing. http://www.R-project.org/.

Rawson DS. 195l. Studies of the fish of Great Slave Lake. J Fish Res Bd Can. 8b(4):207–240..
Rawson DS, Elsey CA. 1950. Reduction in the Longnose sucker population of Pyramid Lake, Alberta, in

an attempt to improve angling. Trans Am Fish Soc. 78(1):13–31.
Ricciardi A, Rasmussen JB. 1999. Extinction rates of North American freshwater fauna. Conserv Biol.

13(5):1220–1222.
Roemhild G. 1994. Aquatic insects and the fires of 1988. Yellowstone Sci. 2(2):2–4. https://www.nps.gov/

yell/learn/upload/YS_2_2_sm.pdf.
Simberloff D. 2013. Invasive species: what everyone needs to know. Oxford: Oxford University Press.

http://choicereviews.org/review/10.5860/CHOICE.51-3236.
Syslo JM, Guy CS, Koel TM. 2016. Feeding ecology of native and nonnative salmonids during the expan-

sion of a nonnative apex predator in Yellowstone Lake, Yellowstone National Park. Trans Am Fish
Soc. 145(3):476–492.

Tronstad LM, Hall RO, Koel TM, Gerow KG. 2010. Introduced Lake Trout produced a four-level trophic
cascade in Yellowstone Lake. Trans Am Fish Soc. 139(5):1536–1550.

Varley JD, Schullery P. 1998. Yellowstone fishes: ecology, history, and angling in the Park. Mechanicsburg
(PA): Stackpole Books.

12 K. M. FUREY ET AL.

http://www.R-project.org/
https://www.nps.gov/yell/learn/upload/YS_2_2_sm.pdf
https://www.nps.gov/yell/learn/upload/YS_2_2_sm.pdf
http://choicereviews.org/review/10.5860/CHOICE.51-3236


Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E. 1998. Quantifying threats to imperiled species in
the United States: assessing the relative importance of habitat destruction, alien species, pollution, over-
exploitation, and disease. BioScience. 48(8):607–615.

WWF. 2016. Living Planet Report 2016: risk and resilience in a new era. Gland, Switzerland: WWF
International.

JOURNAL OF FRESHWATER ECOLOGY 13


	Abstract
	Introduction
	Methods and materials
	Study site
	Fish collection
	Diet extraction and identification
	Diet analysis
	Size-specific diet shift
	Feeding patterns

	Historical comparison

	Results
	Size-specific diet shift
	Feeding patterns
	Historical comparison

	Discussion
	Size-specific shift
	Feeding pattern
	Historical comparison 


	Conclusion
	Acknowledgements
	Disclosure statement
	Data availability statement
	References


